{"title":"从非混合Markov链理解当事人欺诈索赔的显著性检验","authors":"Wendy K. Tam Cho, Simon Rubinstein-Salzedo","doi":"10.1080/2330443X.2019.1574687","DOIUrl":null,"url":null,"abstract":"ABSTRACT Recently, Chikina, Frieze, and Pegden proposed a way to assess significance in a Markov chain without requiring that Markov chain to mix. They presented their theorem as a rigorous test for partisan gerrymandering. We clarify that their ε-outlier test is distinct from a traditional global outlier test and does not indicate, as they imply, that a particular electoral map is associated with an extreme level of “partisan unfairness.” In fact, a map could simultaneously be an ε-outlier and have a typical partisan fairness value. That is, their test identifies local outliers but has no power for assessing whether that local outlier is a global outlier. How their specific definition of local outlier is related to a legal gerrymandering claim is unclear given Supreme Court precedent.","PeriodicalId":43397,"journal":{"name":"Statistics and Public Policy","volume":"6 1","pages":"44 - 49"},"PeriodicalIF":1.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2330443X.2019.1574687","citationCount":"8","resultStr":"{\"title\":\"Understanding Significance Tests From a Non-Mixing Markov Chain for Partisan Gerrymandering Claims\",\"authors\":\"Wendy K. Tam Cho, Simon Rubinstein-Salzedo\",\"doi\":\"10.1080/2330443X.2019.1574687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Recently, Chikina, Frieze, and Pegden proposed a way to assess significance in a Markov chain without requiring that Markov chain to mix. They presented their theorem as a rigorous test for partisan gerrymandering. We clarify that their ε-outlier test is distinct from a traditional global outlier test and does not indicate, as they imply, that a particular electoral map is associated with an extreme level of “partisan unfairness.” In fact, a map could simultaneously be an ε-outlier and have a typical partisan fairness value. That is, their test identifies local outliers but has no power for assessing whether that local outlier is a global outlier. How their specific definition of local outlier is related to a legal gerrymandering claim is unclear given Supreme Court precedent.\",\"PeriodicalId\":43397,\"journal\":{\"name\":\"Statistics and Public Policy\",\"volume\":\"6 1\",\"pages\":\"44 - 49\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/2330443X.2019.1574687\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Public Policy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/2330443X.2019.1574687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Public Policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2330443X.2019.1574687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
Understanding Significance Tests From a Non-Mixing Markov Chain for Partisan Gerrymandering Claims
ABSTRACT Recently, Chikina, Frieze, and Pegden proposed a way to assess significance in a Markov chain without requiring that Markov chain to mix. They presented their theorem as a rigorous test for partisan gerrymandering. We clarify that their ε-outlier test is distinct from a traditional global outlier test and does not indicate, as they imply, that a particular electoral map is associated with an extreme level of “partisan unfairness.” In fact, a map could simultaneously be an ε-outlier and have a typical partisan fairness value. That is, their test identifies local outliers but has no power for assessing whether that local outlier is a global outlier. How their specific definition of local outlier is related to a legal gerrymandering claim is unclear given Supreme Court precedent.