基于卷积神经网络的钢筋混凝土桥梁构件四类缺陷分类模型

IF 2.7 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
R. Trach
{"title":"基于卷积神经网络的钢筋混凝土桥梁构件四类缺陷分类模型","authors":"R. Trach","doi":"10.3390/infrastructures8080123","DOIUrl":null,"url":null,"abstract":"Recently, the bridge infrastructure in Ukraine has faced the problem of having a significant number of damaged bridges. It is obvious that the repair and restoration of bridges should be preceded by a procedure consisting of visual inspection and evaluation of the technical condition. The problem of fast and high-quality collection, processing and storing large datasets is gaining more and more relevance. An effective way to solve this problem is to use various machine learning methods in bridge infrastructure management. The purpose of this study was to create a model based on convolutional neural networks (CNNs) for classifying images of concrete bridge elements into four classes: “defect free”, “crack”, “spalling” and “popout”. The eight CNN models were created and used to conduct its training, validation and testing. In general, it can be stated that all CNN models showed high performance. The analysis of loss function (categorical cross-entropy) and quality measure (accuracy) showed that the model on the MobileNet architecture has optimal values (loss, 0.0264, and accuracy, 94.61%). This model can be used further without retraining, and it can classify images on datasets that it has not yet “seen”. Practical use of such a model allows for the identification of three damage types.","PeriodicalId":13601,"journal":{"name":"Infrastructures","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Model Classifying Four Classes of Defects in Reinforced Concrete Bridge Elements Using Convolutional Neural Networks\",\"authors\":\"R. Trach\",\"doi\":\"10.3390/infrastructures8080123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the bridge infrastructure in Ukraine has faced the problem of having a significant number of damaged bridges. It is obvious that the repair and restoration of bridges should be preceded by a procedure consisting of visual inspection and evaluation of the technical condition. The problem of fast and high-quality collection, processing and storing large datasets is gaining more and more relevance. An effective way to solve this problem is to use various machine learning methods in bridge infrastructure management. The purpose of this study was to create a model based on convolutional neural networks (CNNs) for classifying images of concrete bridge elements into four classes: “defect free”, “crack”, “spalling” and “popout”. The eight CNN models were created and used to conduct its training, validation and testing. In general, it can be stated that all CNN models showed high performance. The analysis of loss function (categorical cross-entropy) and quality measure (accuracy) showed that the model on the MobileNet architecture has optimal values (loss, 0.0264, and accuracy, 94.61%). This model can be used further without retraining, and it can classify images on datasets that it has not yet “seen”. Practical use of such a model allows for the identification of three damage types.\",\"PeriodicalId\":13601,\"journal\":{\"name\":\"Infrastructures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrastructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/infrastructures8080123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrastructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/infrastructures8080123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

最近,乌克兰的桥梁基础设施面临着大量桥梁受损的问题。很明显,在修复和恢复桥梁之前,应先进行目视检查和技术条件评估。快速、高质量地收集、处理和存储大型数据集的问题越来越重要。解决这一问题的有效方法是在桥梁基础设施管理中使用各种机器学习方法。本研究的目的是创建一个基于卷积神经网络(CNNs)的模型,将混凝土桥梁构件的图像分为四类:“无缺陷”、“裂缝”、“剥落”和“弹出”。八个CNN模型被创建并用于进行培训、验证和测试。总的来说,可以说所有的CNN模型都表现出了高性能。损失函数(分类交叉熵)和质量度量(准确度)的分析表明,MobileNet架构上的模型具有最优值(损失0.0264,准确度94.61%)。该模型可以在不进行再训练的情况下进一步使用,并且可以对尚未“看到”的数据集上的图像进行分类。这种模型的实际使用允许识别三种损伤类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Model Classifying Four Classes of Defects in Reinforced Concrete Bridge Elements Using Convolutional Neural Networks
Recently, the bridge infrastructure in Ukraine has faced the problem of having a significant number of damaged bridges. It is obvious that the repair and restoration of bridges should be preceded by a procedure consisting of visual inspection and evaluation of the technical condition. The problem of fast and high-quality collection, processing and storing large datasets is gaining more and more relevance. An effective way to solve this problem is to use various machine learning methods in bridge infrastructure management. The purpose of this study was to create a model based on convolutional neural networks (CNNs) for classifying images of concrete bridge elements into four classes: “defect free”, “crack”, “spalling” and “popout”. The eight CNN models were created and used to conduct its training, validation and testing. In general, it can be stated that all CNN models showed high performance. The analysis of loss function (categorical cross-entropy) and quality measure (accuracy) showed that the model on the MobileNet architecture has optimal values (loss, 0.0264, and accuracy, 94.61%). This model can be used further without retraining, and it can classify images on datasets that it has not yet “seen”. Practical use of such a model allows for the identification of three damage types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infrastructures
Infrastructures Engineering-Building and Construction
CiteScore
5.20
自引率
7.70%
发文量
145
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信