一对多值算子的公共不动点理论

IF 1.4 4区 数学 Q1 MATHEMATICS
A. Petruşel, G. Petruşel
{"title":"一对多值算子的公共不动点理论","authors":"A. Petruşel, G. Petruşel","doi":"10.37193/cjm.2022.03.15","DOIUrl":null,"url":null,"abstract":"\"The aim of this paper is to present a common fixed point theory for a pair of multivalued op- erators in complete metric spaces. Existence and stability results for the common fixed point problem will be discussed. The approach is based on some fixed point results for multivalued graphical contractions and for multivalued operators of Feng-Liu type. Our results extend to the multivalued case some recent results in the literature.\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Common fixed point theory for a pair of multivalued operators\",\"authors\":\"A. Petruşel, G. Petruşel\",\"doi\":\"10.37193/cjm.2022.03.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"The aim of this paper is to present a common fixed point theory for a pair of multivalued op- erators in complete metric spaces. Existence and stability results for the common fixed point problem will be discussed. The approach is based on some fixed point results for multivalued graphical contractions and for multivalued operators of Feng-Liu type. Our results extend to the multivalued case some recent results in the literature.\\\"\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2022.03.15\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2022.03.15","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是给出完备度量空间中一对多值算子的一个公共不动点理论。讨论了公共不动点问题的存在性和稳定性结果。该方法基于多值图缩和丰流型多值算子的不动点结果。我们的结果扩展到多值情况下,一些最近的文献结果。”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Common fixed point theory for a pair of multivalued operators
"The aim of this paper is to present a common fixed point theory for a pair of multivalued op- erators in complete metric spaces. Existence and stability results for the common fixed point problem will be discussed. The approach is based on some fixed point results for multivalued graphical contractions and for multivalued operators of Feng-Liu type. Our results extend to the multivalued case some recent results in the literature."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信