恒电流导电聚合物掺杂法电化学测定鹅膏菌浆及提取物中阿玛丁的理论描述

Q3 Biochemistry, Genetics and Molecular Biology
{"title":"恒电流导电聚合物掺杂法电化学测定鹅膏菌浆及提取物中阿玛丁的理论描述","authors":"","doi":"10.33263/briac134.400","DOIUrl":null,"url":null,"abstract":"The theoretical description for amavadin-ion electrochemical determination in mushroom pulp has been given for the first time. The correspondent mathematical model has been developed and analyzed by linear stability theory and bifurcation analysis, providing the theoretical investigation of the electrochemical behavior of the electroanalytical system. It has been shown that the system behavior in galvanostatic mode is more dynamic than in potentiostatic mode, which is reflected in the enhancement of the probability of the electrochemical oscillations due to the intense influence of chemical and electrochemical stages on both DEL and surface charge. Nevertheless, the system is efficient for electroanalysis or conducting polymer modification for electroanalytical purposes.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Theoretical Description for Amavadin-Ion Electrochemical Determination in Amanita muscaria Mushroom Pulp and Extract by Galvanostatic Conducting Polymer Doping\",\"authors\":\"\",\"doi\":\"10.33263/briac134.400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theoretical description for amavadin-ion electrochemical determination in mushroom pulp has been given for the first time. The correspondent mathematical model has been developed and analyzed by linear stability theory and bifurcation analysis, providing the theoretical investigation of the electrochemical behavior of the electroanalytical system. It has been shown that the system behavior in galvanostatic mode is more dynamic than in potentiostatic mode, which is reflected in the enhancement of the probability of the electrochemical oscillations due to the intense influence of chemical and electrochemical stages on both DEL and surface charge. Nevertheless, the system is efficient for electroanalysis or conducting polymer modification for electroanalytical purposes.\",\"PeriodicalId\":9026,\"journal\":{\"name\":\"Biointerface Research in Applied Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerface Research in Applied Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33263/briac134.400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

首次对蘑菇果肉中阿玛瓦丁离子的电化学测定方法进行了理论描述。建立了相应的数学模型,并运用线性稳定性理论和分岔分析方法对其进行了分析,为电分析体系的电化学行为提供了理论依据。研究表明,恒流模式下的系统行为比恒电位模式下更动态,这反映在化学和电化学阶段对DEL和表面电荷的强烈影响使电化学振荡的概率增强。然而,该系统对于电分析或为电分析目的进行聚合物改性是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Theoretical Description for Amavadin-Ion Electrochemical Determination in Amanita muscaria Mushroom Pulp and Extract by Galvanostatic Conducting Polymer Doping
The theoretical description for amavadin-ion electrochemical determination in mushroom pulp has been given for the first time. The correspondent mathematical model has been developed and analyzed by linear stability theory and bifurcation analysis, providing the theoretical investigation of the electrochemical behavior of the electroanalytical system. It has been shown that the system behavior in galvanostatic mode is more dynamic than in potentiostatic mode, which is reflected in the enhancement of the probability of the electrochemical oscillations due to the intense influence of chemical and electrochemical stages on both DEL and surface charge. Nevertheless, the system is efficient for electroanalysis or conducting polymer modification for electroanalytical purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
256
期刊介绍: Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信