{"title":"钙钛矿太阳能电池中锂离子迁移驱动的α-FAPbI3的不可逆相反转换","authors":"Seung-Gu Choi, Jin-Wook Lee","doi":"10.1002/eom2.12398","DOIUrl":null,"url":null,"abstract":"<p>Typically n-i-p structured perovskite solar cells (PSCs) incorporate 2,2′,7,7′-tetrakis (<i>N</i>,<i>N</i>-di-<i>p</i>-methoxyphenyl amine)-9,9′-spirobifluorene (spiro-OMeTAD) as the hole-transporting material. Chemical doping of spiro-OMeTAD involves a lithium bis(trifluoromethyl sulfonyl)imide dopant, causing complex side-reactions that affect the device performance, which are not fully understood. Here, we investigate the aging-dependent device performance of widely used formamidinium lead triiodide (FAPbI<sub>3</sub>)-based PSCs correlated with lithium-ion (Li<sup>+</sup>) migration. Comprehensive analyses reveal that Li<sup>+</sup> ions migrate from spiro-OMeTAD to perovskite, SnO<sub>2</sub>, and their interfaces to induce the phase-back conversion of α-FAPbI<sub>3</sub> to δ-FAPbI<sub>3</sub>, generation and migration of iodine defects, and de-doping of spiro-OMeTAD. The rapid performance drop of FAPbI<sub>3</sub>-based PSCs, even aging under dark conditions, is attributed to a series of these processes. This study identifies the hidden side effects of Li<sup>+</sup> ion migration in FAPbI<sub>3</sub>-based PSCs that can guide further work to maximize the operational stability of PSCs.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"5 10","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12398","citationCount":"0","resultStr":"{\"title\":\"Irreversible phase back conversion of α-FAPbI3 driven by lithium-ion migration in perovskite solar cells\",\"authors\":\"Seung-Gu Choi, Jin-Wook Lee\",\"doi\":\"10.1002/eom2.12398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Typically n-i-p structured perovskite solar cells (PSCs) incorporate 2,2′,7,7′-tetrakis (<i>N</i>,<i>N</i>-di-<i>p</i>-methoxyphenyl amine)-9,9′-spirobifluorene (spiro-OMeTAD) as the hole-transporting material. Chemical doping of spiro-OMeTAD involves a lithium bis(trifluoromethyl sulfonyl)imide dopant, causing complex side-reactions that affect the device performance, which are not fully understood. Here, we investigate the aging-dependent device performance of widely used formamidinium lead triiodide (FAPbI<sub>3</sub>)-based PSCs correlated with lithium-ion (Li<sup>+</sup>) migration. Comprehensive analyses reveal that Li<sup>+</sup> ions migrate from spiro-OMeTAD to perovskite, SnO<sub>2</sub>, and their interfaces to induce the phase-back conversion of α-FAPbI<sub>3</sub> to δ-FAPbI<sub>3</sub>, generation and migration of iodine defects, and de-doping of spiro-OMeTAD. The rapid performance drop of FAPbI<sub>3</sub>-based PSCs, even aging under dark conditions, is attributed to a series of these processes. This study identifies the hidden side effects of Li<sup>+</sup> ion migration in FAPbI<sub>3</sub>-based PSCs that can guide further work to maximize the operational stability of PSCs.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"5 10\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12398\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Irreversible phase back conversion of α-FAPbI3 driven by lithium-ion migration in perovskite solar cells
Typically n-i-p structured perovskite solar cells (PSCs) incorporate 2,2′,7,7′-tetrakis (N,N-di-p-methoxyphenyl amine)-9,9′-spirobifluorene (spiro-OMeTAD) as the hole-transporting material. Chemical doping of spiro-OMeTAD involves a lithium bis(trifluoromethyl sulfonyl)imide dopant, causing complex side-reactions that affect the device performance, which are not fully understood. Here, we investigate the aging-dependent device performance of widely used formamidinium lead triiodide (FAPbI3)-based PSCs correlated with lithium-ion (Li+) migration. Comprehensive analyses reveal that Li+ ions migrate from spiro-OMeTAD to perovskite, SnO2, and their interfaces to induce the phase-back conversion of α-FAPbI3 to δ-FAPbI3, generation and migration of iodine defects, and de-doping of spiro-OMeTAD. The rapid performance drop of FAPbI3-based PSCs, even aging under dark conditions, is attributed to a series of these processes. This study identifies the hidden side effects of Li+ ion migration in FAPbI3-based PSCs that can guide further work to maximize the operational stability of PSCs.