原子和核物理中的彭宁阱质量测量

IF 9.1 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR
J. Dilling, K. Blaum, M. Brodeur, S. Eliseev
{"title":"原子和核物理中的彭宁阱质量测量","authors":"J. Dilling, K. Blaum, M. Brodeur, S. Eliseev","doi":"10.1146/ANNUREV-NUCL-102711-094939","DOIUrl":null,"url":null,"abstract":"Penning-trap mass spectrometry in atomic and nuclear physics has become a well-established and reliable tool for the determination of atomic masses. In combination with short-lived radioactive nuclides it was first introduced at ISOLTRAP at the Isotope Mass Separator On-Line facility (ISOLDE) at CERN. Penning traps have found new applications in coupling to other production mechanisms, such as in-flight production and separation systems. The applications in atomic and nuclear physics range from nuclear structure studies and related precision tests of theoretical approaches to description of the strong interaction to tests of the electroweak Standard Model, quantum electrodynamics and neutrino physics, and applications in nuclear astrophysics. The success of Penning-trap mass spectrometry is due to its precision and accuracy, even for low ion intensities (i.e., low production yields), as well as its very fast measurement cycle, enabling access to short-lived isotopes. The current reach in relative mass precision goes beyond δ m/ m=10−8, the half-life limit is as low as a few milliseconds, and the sensitivity is on the order of one ion per minute in the trap. We provide a comprehensive overview of the techniques and applications of Penning-trap mass spectrometry in nuclear and atomic physics.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2018-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV-NUCL-102711-094939","citationCount":"54","resultStr":"{\"title\":\"Penning-Trap Mass Measurements in Atomic and Nuclear Physics\",\"authors\":\"J. Dilling, K. Blaum, M. Brodeur, S. Eliseev\",\"doi\":\"10.1146/ANNUREV-NUCL-102711-094939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penning-trap mass spectrometry in atomic and nuclear physics has become a well-established and reliable tool for the determination of atomic masses. In combination with short-lived radioactive nuclides it was first introduced at ISOLTRAP at the Isotope Mass Separator On-Line facility (ISOLDE) at CERN. Penning traps have found new applications in coupling to other production mechanisms, such as in-flight production and separation systems. The applications in atomic and nuclear physics range from nuclear structure studies and related precision tests of theoretical approaches to description of the strong interaction to tests of the electroweak Standard Model, quantum electrodynamics and neutrino physics, and applications in nuclear astrophysics. The success of Penning-trap mass spectrometry is due to its precision and accuracy, even for low ion intensities (i.e., low production yields), as well as its very fast measurement cycle, enabling access to short-lived isotopes. The current reach in relative mass precision goes beyond δ m/ m=10−8, the half-life limit is as low as a few milliseconds, and the sensitivity is on the order of one ion per minute in the trap. We provide a comprehensive overview of the techniques and applications of Penning-trap mass spectrometry in nuclear and atomic physics.\",\"PeriodicalId\":8090,\"journal\":{\"name\":\"Annual Review of Nuclear and Particle Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2018-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/ANNUREV-NUCL-102711-094939\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Nuclear and Particle Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/ANNUREV-NUCL-102711-094939\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/ANNUREV-NUCL-102711-094939","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 54

摘要

原子和核物理学中的彭宁陷阱质谱法已成为测定原子质量的一种公认且可靠的工具。它与短命放射性核素结合,首次在欧洲核子研究中心的同位素质量分离器在线设施(ISOLDE)的ISOLTRAP中引入。Penning捕集器在与其他生产机制耦合方面有了新的应用,如飞行中的生产和分离系统。原子和核物理学的应用范围从核结构研究和描述强相互作用的理论方法的相关精度测试到电弱标准模型的测试、量子电动力学和中微子物理学,以及在核天体物理学中的应用。Penning陷阱质谱法的成功归功于其精度和准确性,即使是在低离子强度(即低产量)的情况下,以及其非常快的测量周期,从而能够获得短寿命同位素。当前相对质量精度达到的范围超过了δm/m=10−8,半衰期限制低至几毫秒,陷阱中的灵敏度约为每分钟一个离子。我们对Penning阱质谱法在核物理和原子物理中的技术和应用进行了全面的概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Penning-Trap Mass Measurements in Atomic and Nuclear Physics
Penning-trap mass spectrometry in atomic and nuclear physics has become a well-established and reliable tool for the determination of atomic masses. In combination with short-lived radioactive nuclides it was first introduced at ISOLTRAP at the Isotope Mass Separator On-Line facility (ISOLDE) at CERN. Penning traps have found new applications in coupling to other production mechanisms, such as in-flight production and separation systems. The applications in atomic and nuclear physics range from nuclear structure studies and related precision tests of theoretical approaches to description of the strong interaction to tests of the electroweak Standard Model, quantum electrodynamics and neutrino physics, and applications in nuclear astrophysics. The success of Penning-trap mass spectrometry is due to its precision and accuracy, even for low ion intensities (i.e., low production yields), as well as its very fast measurement cycle, enabling access to short-lived isotopes. The current reach in relative mass precision goes beyond δ m/ m=10−8, the half-life limit is as low as a few milliseconds, and the sensitivity is on the order of one ion per minute in the trap. We provide a comprehensive overview of the techniques and applications of Penning-trap mass spectrometry in nuclear and atomic physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
21.50
自引率
0.80%
发文量
18
期刊介绍: The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation. One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信