{"title":"斯洛文尼亚波霍杰山脉HP‐UHP地体变质沉积物中丰富的P‐T‐T信息阐明了东阿尔卑斯山脉的演化","authors":"Botao Li, Hans-Joachim Massonne, Xiaoping Yuan","doi":"10.1111/jmg.12740","DOIUrl":null,"url":null,"abstract":"<p>Contrasting views exist in regard of the evolution of metamorphic rocks in the southeastern Pohorje Mountains (Mts), located in the southeastern Eastern Alps. Major debated points are whether micaschists have experienced ultrahigh-pressure metamorphism in the Late Cretaceous (Eo-Alpine) and whether they were continuously exhumed or experienced a multiple subduction–exhumation process from that time on. Therefore, we studied micaschist sample 18Slo39 with two generations of garnet and phengitic muscovite from this area. Our detailed study of this rock included petrographic observations, chemical analyses of minerals with the electron microprobe, pseudosection modelling, conventional geothermometry, and monazite in-situ U-Th-Pb dating using laser-ablation inductively coupled plasma (ICP) mass spectrometry. The following results were obtained: The studied micaschist was subject to a peak pressure of 1.31 ± 0.14 GPa at 603 ± 26°C in Eo-Alpine times: 90.62 ± 2.78 (2σ) Ma (Stage I). Contact metamorphism at pressure–temperature conditions of 0.66 ± 0.10 GPa and 577 ± 23°C was induced by the intrusion of the Pohorje pluton (Stage III). We determined an early Miocene age of 18.33 ± 0.43 (2σ) Ma for this intrusion. Based on this study and the previously reported data for a micaschist (16Slo12) taken in the vicinity of sample 18Slo39, a geodynamic model is proposed for the region of the Pohorje Mts considering Eo-Alpine subduction of oceanic crust and European continental crust, of which the micaschist was part of. Another high-pressure event in the Eocene (Stage II) was the result of intracontinental subduction because of transpression by the Periadriatic fault system that separates the Eastern Alps from the Southern Alps. This type of subduction gave rise to magma generation and ascent to form the Pohorje pluton, which caused contact metamorphism in its vicinity.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A wealth of P–T–t information from metasediments in the HP–UHP terrane of the Pohorje Mountains, Slovenia, elucidates the evolution of the Eastern Alps\",\"authors\":\"Botao Li, Hans-Joachim Massonne, Xiaoping Yuan\",\"doi\":\"10.1111/jmg.12740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Contrasting views exist in regard of the evolution of metamorphic rocks in the southeastern Pohorje Mountains (Mts), located in the southeastern Eastern Alps. Major debated points are whether micaschists have experienced ultrahigh-pressure metamorphism in the Late Cretaceous (Eo-Alpine) and whether they were continuously exhumed or experienced a multiple subduction–exhumation process from that time on. Therefore, we studied micaschist sample 18Slo39 with two generations of garnet and phengitic muscovite from this area. Our detailed study of this rock included petrographic observations, chemical analyses of minerals with the electron microprobe, pseudosection modelling, conventional geothermometry, and monazite in-situ U-Th-Pb dating using laser-ablation inductively coupled plasma (ICP) mass spectrometry. The following results were obtained: The studied micaschist was subject to a peak pressure of 1.31 ± 0.14 GPa at 603 ± 26°C in Eo-Alpine times: 90.62 ± 2.78 (2σ) Ma (Stage I). Contact metamorphism at pressure–temperature conditions of 0.66 ± 0.10 GPa and 577 ± 23°C was induced by the intrusion of the Pohorje pluton (Stage III). We determined an early Miocene age of 18.33 ± 0.43 (2σ) Ma for this intrusion. Based on this study and the previously reported data for a micaschist (16Slo12) taken in the vicinity of sample 18Slo39, a geodynamic model is proposed for the region of the Pohorje Mts considering Eo-Alpine subduction of oceanic crust and European continental crust, of which the micaschist was part of. Another high-pressure event in the Eocene (Stage II) was the result of intracontinental subduction because of transpression by the Periadriatic fault system that separates the Eastern Alps from the Southern Alps. This type of subduction gave rise to magma generation and ascent to form the Pohorje pluton, which caused contact metamorphism in its vicinity.</p>\",\"PeriodicalId\":16472,\"journal\":{\"name\":\"Journal of Metamorphic Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Metamorphic Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12740\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metamorphic Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12740","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
A wealth of P–T–t information from metasediments in the HP–UHP terrane of the Pohorje Mountains, Slovenia, elucidates the evolution of the Eastern Alps
Contrasting views exist in regard of the evolution of metamorphic rocks in the southeastern Pohorje Mountains (Mts), located in the southeastern Eastern Alps. Major debated points are whether micaschists have experienced ultrahigh-pressure metamorphism in the Late Cretaceous (Eo-Alpine) and whether they were continuously exhumed or experienced a multiple subduction–exhumation process from that time on. Therefore, we studied micaschist sample 18Slo39 with two generations of garnet and phengitic muscovite from this area. Our detailed study of this rock included petrographic observations, chemical analyses of minerals with the electron microprobe, pseudosection modelling, conventional geothermometry, and monazite in-situ U-Th-Pb dating using laser-ablation inductively coupled plasma (ICP) mass spectrometry. The following results were obtained: The studied micaschist was subject to a peak pressure of 1.31 ± 0.14 GPa at 603 ± 26°C in Eo-Alpine times: 90.62 ± 2.78 (2σ) Ma (Stage I). Contact metamorphism at pressure–temperature conditions of 0.66 ± 0.10 GPa and 577 ± 23°C was induced by the intrusion of the Pohorje pluton (Stage III). We determined an early Miocene age of 18.33 ± 0.43 (2σ) Ma for this intrusion. Based on this study and the previously reported data for a micaschist (16Slo12) taken in the vicinity of sample 18Slo39, a geodynamic model is proposed for the region of the Pohorje Mts considering Eo-Alpine subduction of oceanic crust and European continental crust, of which the micaschist was part of. Another high-pressure event in the Eocene (Stage II) was the result of intracontinental subduction because of transpression by the Periadriatic fault system that separates the Eastern Alps from the Southern Alps. This type of subduction gave rise to magma generation and ascent to form the Pohorje pluton, which caused contact metamorphism in its vicinity.
期刊介绍:
The journal, which is published nine times a year, encompasses the entire range of metamorphic studies, from the scale of the individual crystal to that of lithospheric plates, including regional studies of metamorphic terranes, modelling of metamorphic processes, microstructural and deformation studies in relation to metamorphism, geochronology and geochemistry in metamorphic systems, the experimental study of metamorphic reactions, properties of metamorphic minerals and rocks and the economic aspects of metamorphic terranes.