{"title":"丝素包被氧化镁结合磷酸功能化壳聚糖骨再生水凝胶的聚合制备","authors":"Xi Li, Yong-tao Yi, P. Guo, Ru-dan Zhou, Hua Li","doi":"10.1166/jbn.2023.3652","DOIUrl":null,"url":null,"abstract":"The potential of injectable hydrogels based on natural polysaccharides (NPH) for repairing significant bone defects seems promising. Yet their osteogenic, angiogenic, and mechanical characteristics fall short of expectations. To overcome these disadvantages of chitosan-based hydrogels,\n silk fibroin-coated magnesium oxide nanoparticles (SF-MgO-NPs) were integrated into fabricated aqueous-soluble phosphocreatine-functionalized chitosan (CMP) solution to create a CMP@SF-MgO-NPs injectable hydrogel via supramolecular assembly. This hydrogel’s phosphocreatine acts as a\n reservoir to regulate Mg2+ release and as a location for supramolecular interaction with MgO-NPs. Injectable CMP@SF-MgO hydrogels encouraged in vitro calcium phosphate (CaP) deposition, ALP activity, and proliferation to MC3T3-E1 cells. This hydrogel (CMP@SF-MgO-NPs(5)) was also highly\n effective in stimulating the growth of new bone in calvarial lesions of critical size in rats. Therefore, the injectable hydrogel made of CMP@SF-MgO-NPs shows promising potential for bone regeneration.","PeriodicalId":15260,"journal":{"name":"Journal of biomedical nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Convergent Fabrication of Silk Fibroin Coated Magnesium Oxide Conjugated Phosphate Functionalized Chitosan Hydrogel for Bone Regeneration\",\"authors\":\"Xi Li, Yong-tao Yi, P. Guo, Ru-dan Zhou, Hua Li\",\"doi\":\"10.1166/jbn.2023.3652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potential of injectable hydrogels based on natural polysaccharides (NPH) for repairing significant bone defects seems promising. Yet their osteogenic, angiogenic, and mechanical characteristics fall short of expectations. To overcome these disadvantages of chitosan-based hydrogels,\\n silk fibroin-coated magnesium oxide nanoparticles (SF-MgO-NPs) were integrated into fabricated aqueous-soluble phosphocreatine-functionalized chitosan (CMP) solution to create a CMP@SF-MgO-NPs injectable hydrogel via supramolecular assembly. This hydrogel’s phosphocreatine acts as a\\n reservoir to regulate Mg2+ release and as a location for supramolecular interaction with MgO-NPs. Injectable CMP@SF-MgO hydrogels encouraged in vitro calcium phosphate (CaP) deposition, ALP activity, and proliferation to MC3T3-E1 cells. This hydrogel (CMP@SF-MgO-NPs(5)) was also highly\\n effective in stimulating the growth of new bone in calvarial lesions of critical size in rats. Therefore, the injectable hydrogel made of CMP@SF-MgO-NPs shows promising potential for bone regeneration.\",\"PeriodicalId\":15260,\"journal\":{\"name\":\"Journal of biomedical nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1166/jbn.2023.3652\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jbn.2023.3652","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
A Convergent Fabrication of Silk Fibroin Coated Magnesium Oxide Conjugated Phosphate Functionalized Chitosan Hydrogel for Bone Regeneration
The potential of injectable hydrogels based on natural polysaccharides (NPH) for repairing significant bone defects seems promising. Yet their osteogenic, angiogenic, and mechanical characteristics fall short of expectations. To overcome these disadvantages of chitosan-based hydrogels,
silk fibroin-coated magnesium oxide nanoparticles (SF-MgO-NPs) were integrated into fabricated aqueous-soluble phosphocreatine-functionalized chitosan (CMP) solution to create a CMP@SF-MgO-NPs injectable hydrogel via supramolecular assembly. This hydrogel’s phosphocreatine acts as a
reservoir to regulate Mg2+ release and as a location for supramolecular interaction with MgO-NPs. Injectable CMP@SF-MgO hydrogels encouraged in vitro calcium phosphate (CaP) deposition, ALP activity, and proliferation to MC3T3-E1 cells. This hydrogel (CMP@SF-MgO-NPs(5)) was also highly
effective in stimulating the growth of new bone in calvarial lesions of critical size in rats. Therefore, the injectable hydrogel made of CMP@SF-MgO-NPs shows promising potential for bone regeneration.