复曲面的交理论𝑏-复曲面变体中的除数

IF 0.9 1区 数学 Q2 MATHEMATICS
A. M. Botero
{"title":"复曲面的交理论𝑏-复曲面变体中的除数","authors":"A. M. Botero","doi":"10.1090/JAG/721","DOIUrl":null,"url":null,"abstract":"We introduce toric \n\n \n b\n b\n \n\n-divisors on complete smooth toric varieties and a notion of integrability of such divisors. We show that under some positivity assumptions toric \n\n \n b\n b\n \n\n-divisors are integrable and that their degree is given as the volume of a convex set. Moreover, we show that the dimension of the space of global sections of a nef toric \n\n \n b\n b\n \n\n-divisor is equal to the number of lattice points in this convex set and we give a Hilbert–Samuel-type formula for its asymptotic growth. This generalizes classical results for classical toric divisors on toric varieties. Finally, we relate convex bodies associated to \n\n \n b\n b\n \n\n-divisors with Newton–Okounkov bodies. The main motivation for studying toric \n\n \n b\n b\n \n\n-divisors is that they locally encode the singularities of the invariant metric on an automorphic line bundle over a toroidal compactification of a mixed Shimura variety of non-compact type.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2017-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/721","citationCount":"7","resultStr":"{\"title\":\"Intersection theory of toric 𝑏-divisors in toric varieties\",\"authors\":\"A. M. Botero\",\"doi\":\"10.1090/JAG/721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce toric \\n\\n \\n b\\n b\\n \\n\\n-divisors on complete smooth toric varieties and a notion of integrability of such divisors. We show that under some positivity assumptions toric \\n\\n \\n b\\n b\\n \\n\\n-divisors are integrable and that their degree is given as the volume of a convex set. Moreover, we show that the dimension of the space of global sections of a nef toric \\n\\n \\n b\\n b\\n \\n\\n-divisor is equal to the number of lattice points in this convex set and we give a Hilbert–Samuel-type formula for its asymptotic growth. This generalizes classical results for classical toric divisors on toric varieties. Finally, we relate convex bodies associated to \\n\\n \\n b\\n b\\n \\n\\n-divisors with Newton–Okounkov bodies. The main motivation for studying toric \\n\\n \\n b\\n b\\n \\n\\n-divisors is that they locally encode the singularities of the invariant metric on an automorphic line bundle over a toroidal compactification of a mixed Shimura variety of non-compact type.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2017-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/JAG/721\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAG/721\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAG/721","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

我们引入了完备光滑复曲面变种上的复曲面b-除数,以及这类除数的可积性概念。我们证明了在某些正性假设下,复曲面b-因子是可积的,并且它们的阶是作为凸集的体积给出的。此外,我们证明了nef-toric b-除数的全局截面空间的维数等于该凸集中的格点数量,并给出了其渐近增长的Hilbert–Samuel型公式。这推广了复曲面变种上经典复曲面除数的经典结果。最后,我们将与b-除数相关的凸体与Newton–Okounkov体联系起来。研究复曲面b-除数的主要动机是,它们在非紧型的混合Shimura变种的超环面紧化上对自同构线束上不变度量的奇点进行局部编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intersection theory of toric 𝑏-divisors in toric varieties
We introduce toric b b -divisors on complete smooth toric varieties and a notion of integrability of such divisors. We show that under some positivity assumptions toric b b -divisors are integrable and that their degree is given as the volume of a convex set. Moreover, we show that the dimension of the space of global sections of a nef toric b b -divisor is equal to the number of lattice points in this convex set and we give a Hilbert–Samuel-type formula for its asymptotic growth. This generalizes classical results for classical toric divisors on toric varieties. Finally, we relate convex bodies associated to b b -divisors with Newton–Okounkov bodies. The main motivation for studying toric b b -divisors is that they locally encode the singularities of the invariant metric on an automorphic line bundle over a toroidal compactification of a mixed Shimura variety of non-compact type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信