{"title":"利用HDPE/LDPE直列截面管去除空化","authors":"M. Fersi, A. Triki","doi":"10.1115/1.4055155","DOIUrl":null,"url":null,"abstract":"\n This study dealt with the capacity of the inline technique to upgrade steel-pipe -based hydraulic systems with respect to magnitude attenuation and pressure-wave oscillation period expansion. This technique consisted in replacing a short-section of the induced transient pressure region with another of plastic material type, including High- or Low-Density PolyEthylene (HDPE or LDPE). The Method Of Characteristics was implemented to discretize the Extended One-Dimensional Water-Hammer Equations, embedding the Ramos et al. formulation. The comparison of the numerical solution with the observed data, quoted in the literature, and alternative numerical solution demonstrated the accuracy of the developed solver. The test case addressed a transient flow involving the cavitation onset. Results showed that the HDPE plastic-short-section -based layout of the inline technique provided the best tradeoff between magnitude attenuation and pressure-wave oscillation period expansion, in comparison with the LDPE plastic-short-section -based layout and the HDPE or LDPE material -based main-pipe systems.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Removal of Cavitation Using HDPE/LDPE Inline Section-Pipe\",\"authors\":\"M. Fersi, A. Triki\",\"doi\":\"10.1115/1.4055155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study dealt with the capacity of the inline technique to upgrade steel-pipe -based hydraulic systems with respect to magnitude attenuation and pressure-wave oscillation period expansion. This technique consisted in replacing a short-section of the induced transient pressure region with another of plastic material type, including High- or Low-Density PolyEthylene (HDPE or LDPE). The Method Of Characteristics was implemented to discretize the Extended One-Dimensional Water-Hammer Equations, embedding the Ramos et al. formulation. The comparison of the numerical solution with the observed data, quoted in the literature, and alternative numerical solution demonstrated the accuracy of the developed solver. The test case addressed a transient flow involving the cavitation onset. Results showed that the HDPE plastic-short-section -based layout of the inline technique provided the best tradeoff between magnitude attenuation and pressure-wave oscillation period expansion, in comparison with the LDPE plastic-short-section -based layout and the HDPE or LDPE material -based main-pipe systems.\",\"PeriodicalId\":50080,\"journal\":{\"name\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055155\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055155","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Removal of Cavitation Using HDPE/LDPE Inline Section-Pipe
This study dealt with the capacity of the inline technique to upgrade steel-pipe -based hydraulic systems with respect to magnitude attenuation and pressure-wave oscillation period expansion. This technique consisted in replacing a short-section of the induced transient pressure region with another of plastic material type, including High- or Low-Density PolyEthylene (HDPE or LDPE). The Method Of Characteristics was implemented to discretize the Extended One-Dimensional Water-Hammer Equations, embedding the Ramos et al. formulation. The comparison of the numerical solution with the observed data, quoted in the literature, and alternative numerical solution demonstrated the accuracy of the developed solver. The test case addressed a transient flow involving the cavitation onset. Results showed that the HDPE plastic-short-section -based layout of the inline technique provided the best tradeoff between magnitude attenuation and pressure-wave oscillation period expansion, in comparison with the LDPE plastic-short-section -based layout and the HDPE or LDPE material -based main-pipe systems.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.