回复MacGiolla和Ly(2019):关于欺骗研究中贝叶斯因素的报道

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
N. McLatchie, L. Warmelink, Daria Tkacheva
{"title":"回复MacGiolla和Ly(2019):关于欺骗研究中贝叶斯因素的报道","authors":"N. McLatchie, L. Warmelink, Daria Tkacheva","doi":"10.31234/osf.io/kwy3q","DOIUrl":null,"url":null,"abstract":"Bayes factors provide a continuous measure of evidence for one hypothesis (e.g., the null, H0) relative to another (e.g., the alternative, H1). Warmelink, Subramanian, Tkacheva and McLatchie (2019) reported Bayes factors alongside p-values to draw inferences about whether the order of expected versus unexpected questions influenced the amount of details interviewees provided during an interview. Mac Giolla & Ly (2019) provided several recommendations to improve the reporting of Bayesian analyses, and used Warmelink et al (2019) as a concrete example. These included (I) not to over-rely on cut-offs when interpreting Bayes factors; (II) to rely less on Bayes factors, and switch to “nominal support”; and (III) to report the posterior distribution. This paper elaborates on their recommendations and provides two further suggestions for improvement. First, we recommend deception researchers report Robustness Regions to demonstrate the sensitivity of their conclusions. Second, we encourage deception researchers to estimate a priori the sample size likely to be required to produce conclusive results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reply to Mac Giolla and Ly (2019): On the reporting of Bayes factors in deception research\",\"authors\":\"N. McLatchie, L. Warmelink, Daria Tkacheva\",\"doi\":\"10.31234/osf.io/kwy3q\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayes factors provide a continuous measure of evidence for one hypothesis (e.g., the null, H0) relative to another (e.g., the alternative, H1). Warmelink, Subramanian, Tkacheva and McLatchie (2019) reported Bayes factors alongside p-values to draw inferences about whether the order of expected versus unexpected questions influenced the amount of details interviewees provided during an interview. Mac Giolla & Ly (2019) provided several recommendations to improve the reporting of Bayesian analyses, and used Warmelink et al (2019) as a concrete example. These included (I) not to over-rely on cut-offs when interpreting Bayes factors; (II) to rely less on Bayes factors, and switch to “nominal support”; and (III) to report the posterior distribution. This paper elaborates on their recommendations and provides two further suggestions for improvement. First, we recommend deception researchers report Robustness Regions to demonstrate the sensitivity of their conclusions. Second, we encourage deception researchers to estimate a priori the sample size likely to be required to produce conclusive results.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.31234/osf.io/kwy3q\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.31234/osf.io/kwy3q","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

摘要

贝叶斯因子为一个假设(例如,零假设,H0)相对于另一个假设(例如,替代假设,H1)提供了一个连续的证据度量。Warmelink、Subramanian、Tkacheva和McLatchie(2019)报告了贝叶斯因子和p值,以推断预期问题和意外问题的顺序是否会影响受访者在采访中提供的细节数量。Mac Giolla & Ly(2019)提出了一些建议,以改进贝叶斯分析的报告,并以Warmelink等人(2019)为具体示例。其中包括(1)在解释贝叶斯因子时不要过度依赖截止值;(二)减少对贝叶斯因子的依赖,改用“名义支持”;(三)报告后验分布。本文详细阐述了他们的建议,并进一步提出了两点改进建议。首先,我们建议欺骗研究人员报告稳健性区域来证明他们结论的敏感性。其次,我们鼓励欺骗研究人员先验地估计产生结论性结果可能需要的样本量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reply to Mac Giolla and Ly (2019): On the reporting of Bayes factors in deception research
Bayes factors provide a continuous measure of evidence for one hypothesis (e.g., the null, H0) relative to another (e.g., the alternative, H1). Warmelink, Subramanian, Tkacheva and McLatchie (2019) reported Bayes factors alongside p-values to draw inferences about whether the order of expected versus unexpected questions influenced the amount of details interviewees provided during an interview. Mac Giolla & Ly (2019) provided several recommendations to improve the reporting of Bayesian analyses, and used Warmelink et al (2019) as a concrete example. These included (I) not to over-rely on cut-offs when interpreting Bayes factors; (II) to rely less on Bayes factors, and switch to “nominal support”; and (III) to report the posterior distribution. This paper elaborates on their recommendations and provides two further suggestions for improvement. First, we recommend deception researchers report Robustness Regions to demonstrate the sensitivity of their conclusions. Second, we encourage deception researchers to estimate a priori the sample size likely to be required to produce conclusive results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信