生物生产中微生物种群的外部控制:建模和优化观点

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
François Bertaux , Jakob Ruess , Grégory Batt
{"title":"生物生产中微生物种群的外部控制:建模和优化观点","authors":"François Bertaux ,&nbsp;Jakob Ruess ,&nbsp;Grégory Batt","doi":"10.1016/j.coisb.2021.100394","DOIUrl":null,"url":null,"abstract":"<div><p>When engineering microbes for bioproduction, one is necessarily confronted with the existing tradeoff between efficient bioproduction and maintenance of the cell physiology and growth. Moreover, because cellular processes at the single-cell level are coupled with population dynamics via selection mechanisms, this question should be investigated at the population level. Identifying the temporal induction profile that maximizes production in the long term is highly challenging. External control allows to dynamically adapt the strength of the induction from the outside based on intracellular readouts. It allows benchmarking various regulation functions and, coupled with modeling approaches, identifying and applying optimal strategies. In this review, we describe recent advances using quantitative approaches, modeling, and control theory that pave the way to compute external stimulations maximizing long-term production.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"28 ","pages":"Article 100394"},"PeriodicalIF":3.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"External control of microbial populations for bioproduction: A modeling and optimization viewpoint\",\"authors\":\"François Bertaux ,&nbsp;Jakob Ruess ,&nbsp;Grégory Batt\",\"doi\":\"10.1016/j.coisb.2021.100394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When engineering microbes for bioproduction, one is necessarily confronted with the existing tradeoff between efficient bioproduction and maintenance of the cell physiology and growth. Moreover, because cellular processes at the single-cell level are coupled with population dynamics via selection mechanisms, this question should be investigated at the population level. Identifying the temporal induction profile that maximizes production in the long term is highly challenging. External control allows to dynamically adapt the strength of the induction from the outside based on intracellular readouts. It allows benchmarking various regulation functions and, coupled with modeling approaches, identifying and applying optimal strategies. In this review, we describe recent advances using quantitative approaches, modeling, and control theory that pave the way to compute external stimulations maximizing long-term production.</p></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":\"28 \",\"pages\":\"Article 100394\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452310021000895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310021000895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

当工程微生物用于生物生产时,人们必然面临有效的生物生产与维持细胞生理和生长之间的权衡。此外,由于单细胞水平的细胞过程通过选择机制与种群动态耦合,因此应该在种群水平上研究这个问题。确定长期产量最大化的时间诱导曲线是一项极具挑战性的工作。外部控制允许根据细胞内读数动态调整来自外部的感应强度。它允许对各种监管功能进行基准测试,并与建模方法相结合,识别和应用最佳策略。在这篇综述中,我们描述了定量方法、建模和控制理论的最新进展,为计算最大化长期产量的外部刺激铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
External control of microbial populations for bioproduction: A modeling and optimization viewpoint

When engineering microbes for bioproduction, one is necessarily confronted with the existing tradeoff between efficient bioproduction and maintenance of the cell physiology and growth. Moreover, because cellular processes at the single-cell level are coupled with population dynamics via selection mechanisms, this question should be investigated at the population level. Identifying the temporal induction profile that maximizes production in the long term is highly challenging. External control allows to dynamically adapt the strength of the induction from the outside based on intracellular readouts. It allows benchmarking various regulation functions and, coupled with modeling approaches, identifying and applying optimal strategies. In this review, we describe recent advances using quantitative approaches, modeling, and control theory that pave the way to compute external stimulations maximizing long-term production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信