作为化学电阻传感器的二维导电金属-有机框架

IF 4.8 Q2 NANOSCIENCE & NANOTECHNOLOGY
Chungseong Park, Jong Won Baek, Euichul Shin and Il-Doo Kim*, 
{"title":"作为化学电阻传感器的二维导电金属-有机框架","authors":"Chungseong Park,&nbsp;Jong Won Baek,&nbsp;Euichul Shin and Il-Doo Kim*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00024","DOIUrl":null,"url":null,"abstract":"<p >Metal–organic frameworks (MOFs) have emerged as attractive chemical sensing materials due to their exceptionally high porosity and chemical diversity. Nevertheless, the utilization of MOFs in chemiresistive type sensors has been hindered by their inherent limitation in electrical conductivity. The recent emergence of two-dimensional conductive MOFs (2D c-MOFs) has addressed this limitation by offering enhanced electrical conductivity, while still retaining the advantageous properties of MOFs. In particular, c-MOFs have shown promising advantages for the fabrication of sensors capable of operating at room temperature. Thus, active research on gas sensors utilizing c-MOFs is currently underway, focusing on enhancing sensitivity and selectivity. To comprehend the potential of MOFs as chemiresistive sensors for future applications, it is crucial to understand not only the fundamental properties of conductive MOFs but also the state-of-the-art works that contribute to improving their performance. This comprehensive review delves into the distinctive characteristics of 2D c-MOFs as a new class of chemiresistors, providing in-depth insights into their unique sensing properties. Furthermore, we discuss the proposed sensing mechanisms associated with 2D c-MOFs and provide a concise summary of the strategies employed to enhance the sensing performance of 2D c-MOFs. These strategies encompass a range of approaches, including the design of metal nodes and linkers, morphology control, and the synergistic use of composite materials. In addition, the review thoroughly explores the prospects of 2D c-MOFs as chemiresistors and elucidates their remarkable potential for further advancements. The insights presented in this review shed light on future directions and offer valuable opportunities in the chemical sensing research field.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 5","pages":"353–374"},"PeriodicalIF":4.8000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00024","citationCount":"1","resultStr":"{\"title\":\"Two-Dimensional Electrically Conductive Metal–Organic Frameworks as Chemiresistive Sensors\",\"authors\":\"Chungseong Park,&nbsp;Jong Won Baek,&nbsp;Euichul Shin and Il-Doo Kim*,&nbsp;\",\"doi\":\"10.1021/acsnanoscienceau.3c00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metal–organic frameworks (MOFs) have emerged as attractive chemical sensing materials due to their exceptionally high porosity and chemical diversity. Nevertheless, the utilization of MOFs in chemiresistive type sensors has been hindered by their inherent limitation in electrical conductivity. The recent emergence of two-dimensional conductive MOFs (2D c-MOFs) has addressed this limitation by offering enhanced electrical conductivity, while still retaining the advantageous properties of MOFs. In particular, c-MOFs have shown promising advantages for the fabrication of sensors capable of operating at room temperature. Thus, active research on gas sensors utilizing c-MOFs is currently underway, focusing on enhancing sensitivity and selectivity. To comprehend the potential of MOFs as chemiresistive sensors for future applications, it is crucial to understand not only the fundamental properties of conductive MOFs but also the state-of-the-art works that contribute to improving their performance. This comprehensive review delves into the distinctive characteristics of 2D c-MOFs as a new class of chemiresistors, providing in-depth insights into their unique sensing properties. Furthermore, we discuss the proposed sensing mechanisms associated with 2D c-MOFs and provide a concise summary of the strategies employed to enhance the sensing performance of 2D c-MOFs. These strategies encompass a range of approaches, including the design of metal nodes and linkers, morphology control, and the synergistic use of composite materials. In addition, the review thoroughly explores the prospects of 2D c-MOFs as chemiresistors and elucidates their remarkable potential for further advancements. The insights presented in this review shed light on future directions and offer valuable opportunities in the chemical sensing research field.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":\"3 5\",\"pages\":\"353–374\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00024\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

金属有机骨架(mof)由于其极高的孔隙率和化学多样性而成为一种有吸引力的化学传感材料。然而,由于其固有的导电性限制,mof在化学电阻型传感器中的应用一直受到阻碍。最近出现的二维导电mof (2D c- mof)通过提供增强的导电性来解决这一限制,同时仍然保留了mof的优势特性。特别是,c- mof在制造能够在室温下工作的传感器方面显示出有希望的优势。因此,利用c- mof的气体传感器目前正在进行积极的研究,重点是提高灵敏度和选择性。为了理解mof作为化学电阻传感器在未来应用的潜力,不仅要了解导电mof的基本特性,还要了解有助于提高其性能的最新工作。这篇全面的综述深入研究了2D c- mof作为一类新型化学电阻器的独特特性,深入了解了它们独特的传感特性。此外,我们还讨论了与2D c-MOFs相关的传感机制,并简要总结了用于提高2D c-MOFs传感性能的策略。这些策略包括一系列方法,包括金属节点和连接件的设计、形态控制和复合材料的协同使用。此外,本文还深入探讨了二维c- mof作为化学电阻的前景,并阐明了其进一步发展的巨大潜力。本文提出的见解为化学传感领域的未来研究方向指明了方向,并提供了宝贵的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two-Dimensional Electrically Conductive Metal–Organic Frameworks as Chemiresistive Sensors

Two-Dimensional Electrically Conductive Metal–Organic Frameworks as Chemiresistive Sensors

Metal–organic frameworks (MOFs) have emerged as attractive chemical sensing materials due to their exceptionally high porosity and chemical diversity. Nevertheless, the utilization of MOFs in chemiresistive type sensors has been hindered by their inherent limitation in electrical conductivity. The recent emergence of two-dimensional conductive MOFs (2D c-MOFs) has addressed this limitation by offering enhanced electrical conductivity, while still retaining the advantageous properties of MOFs. In particular, c-MOFs have shown promising advantages for the fabrication of sensors capable of operating at room temperature. Thus, active research on gas sensors utilizing c-MOFs is currently underway, focusing on enhancing sensitivity and selectivity. To comprehend the potential of MOFs as chemiresistive sensors for future applications, it is crucial to understand not only the fundamental properties of conductive MOFs but also the state-of-the-art works that contribute to improving their performance. This comprehensive review delves into the distinctive characteristics of 2D c-MOFs as a new class of chemiresistors, providing in-depth insights into their unique sensing properties. Furthermore, we discuss the proposed sensing mechanisms associated with 2D c-MOFs and provide a concise summary of the strategies employed to enhance the sensing performance of 2D c-MOFs. These strategies encompass a range of approaches, including the design of metal nodes and linkers, morphology control, and the synergistic use of composite materials. In addition, the review thoroughly explores the prospects of 2D c-MOFs as chemiresistors and elucidates their remarkable potential for further advancements. The insights presented in this review shed light on future directions and offer valuable opportunities in the chemical sensing research field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nanoscience Au
ACS Nanoscience Au 材料科学、纳米科学-
CiteScore
4.20
自引率
0.00%
发文量
0
期刊介绍: ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信