Martina Bortolami, I. Chiarotto, L. Mattiello, R. Petrucci, D. Rocco, Fabrizio Vetica, M. Feroci
{"title":"有机电化学:21世纪β-内酰胺类化合物的合成与功能化","authors":"Martina Bortolami, I. Chiarotto, L. Mattiello, R. Petrucci, D. Rocco, Fabrizio Vetica, M. Feroci","doi":"10.1515/hc-2020-0121","DOIUrl":null,"url":null,"abstract":"Abstract Organic electrochemistry is a technique that allows for the heterogeneous redox reactions avoiding both the use of stoichiometric amounts of redox reagents and the resulting formation of stoichiometric by-products. In fact, the redox reagent in these reactions is the electron, which is naturally eco-friendly and produces no side compounds. It is therefore quite obvious that electrochemistry can be classified as a “green” technology. The use of this methodology in the synthesis of β-lactams is not a novelty, but the growing interest in this class of biologically active compounds, due to the discovery of new fields of application (after a moment of decrease in interest due to antibiotic resistance) has been a stimulus for the search for more efficient electrochemical ways to synthesize and transform β-lactams. Thus, this review deals with the twenty-first-century applications of electroorganic technique to the chemistry of β-lactams, by analyzing first the syntheses classified by the type of reactions (cyclization, cycloaddition, etc.) and then by manipulating the β-lactam structure, using it as a synthon. Lastly, the importance of this technique is demonstrated by a study of a pilot plant scale reduction of a cephalosporanic acid derivative to a commercially important antibiotic.","PeriodicalId":12914,"journal":{"name":"Heterocyclic Communications","volume":"27 1","pages":"32 - 44"},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/hc-2020-0121","citationCount":"2","resultStr":"{\"title\":\"Organic electrochemistry: Synthesis and functionalization of β-lactams in the twenty-first century\",\"authors\":\"Martina Bortolami, I. Chiarotto, L. Mattiello, R. Petrucci, D. Rocco, Fabrizio Vetica, M. Feroci\",\"doi\":\"10.1515/hc-2020-0121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Organic electrochemistry is a technique that allows for the heterogeneous redox reactions avoiding both the use of stoichiometric amounts of redox reagents and the resulting formation of stoichiometric by-products. In fact, the redox reagent in these reactions is the electron, which is naturally eco-friendly and produces no side compounds. It is therefore quite obvious that electrochemistry can be classified as a “green” technology. The use of this methodology in the synthesis of β-lactams is not a novelty, but the growing interest in this class of biologically active compounds, due to the discovery of new fields of application (after a moment of decrease in interest due to antibiotic resistance) has been a stimulus for the search for more efficient electrochemical ways to synthesize and transform β-lactams. Thus, this review deals with the twenty-first-century applications of electroorganic technique to the chemistry of β-lactams, by analyzing first the syntheses classified by the type of reactions (cyclization, cycloaddition, etc.) and then by manipulating the β-lactam structure, using it as a synthon. Lastly, the importance of this technique is demonstrated by a study of a pilot plant scale reduction of a cephalosporanic acid derivative to a commercially important antibiotic.\",\"PeriodicalId\":12914,\"journal\":{\"name\":\"Heterocyclic Communications\",\"volume\":\"27 1\",\"pages\":\"32 - 44\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/hc-2020-0121\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heterocyclic Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/hc-2020-0121\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heterocyclic Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/hc-2020-0121","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Organic electrochemistry: Synthesis and functionalization of β-lactams in the twenty-first century
Abstract Organic electrochemistry is a technique that allows for the heterogeneous redox reactions avoiding both the use of stoichiometric amounts of redox reagents and the resulting formation of stoichiometric by-products. In fact, the redox reagent in these reactions is the electron, which is naturally eco-friendly and produces no side compounds. It is therefore quite obvious that electrochemistry can be classified as a “green” technology. The use of this methodology in the synthesis of β-lactams is not a novelty, but the growing interest in this class of biologically active compounds, due to the discovery of new fields of application (after a moment of decrease in interest due to antibiotic resistance) has been a stimulus for the search for more efficient electrochemical ways to synthesize and transform β-lactams. Thus, this review deals with the twenty-first-century applications of electroorganic technique to the chemistry of β-lactams, by analyzing first the syntheses classified by the type of reactions (cyclization, cycloaddition, etc.) and then by manipulating the β-lactam structure, using it as a synthon. Lastly, the importance of this technique is demonstrated by a study of a pilot plant scale reduction of a cephalosporanic acid derivative to a commercially important antibiotic.
期刊介绍:
Heterocyclic Communications (HC) is a bimonthly, peer-reviewed journal publishing preliminary communications, research articles, and reviews on significant developments in all phases of heterocyclic chemistry, including general synthesis, natural products, computational analysis, considerable biological activity and inorganic ring systems. Clear presentation of experimental and computational data is strongly emphasized. Heterocyclic chemistry is a rapidly growing field. By some estimates original research papers in heterocyclic chemistry have increased to more than 60% of the current organic chemistry literature published. This explosive growth is even greater when considering heterocyclic research published in materials science, physical, biophysical, analytical, bioorganic, pharmaceutical, medicinal and natural products journals. There is a need, therefore, for a journal dedicated explicitly to heterocyclic chemistry and the properties of heterocyclic compounds.