T. Husveg, R. Husveg, Niels van Teeffelen, R. Verwey, Peter Guinee
{"title":"回顾旋风低剪切节流阀和控制阀的应用经验","authors":"T. Husveg, R. Husveg, Niels van Teeffelen, R. Verwey, Peter Guinee","doi":"10.2118/205016-PA","DOIUrl":null,"url":null,"abstract":"\n In hydrocarbon production and processing, choke and control valves mix and emulsify petroleum phases. The consequence is often that the efficiency of separation processes is affected and finally that the quality of oil and water phases is degraded. Over the last few years, low-shear valves targeting petroleum processes have emerged on the market.\n This paper presents four separate live-fluid experiences from low-shear valve installations, each surveyed and documented by an independent third party. Three of the installations refer to choke valves, whereas the fourth installation refers to a control valve. For each installation, standard choke and control valves were used as reference valves. In terms of downstream separation efficiency, the low-shear choke valves reduced oil-in-water concentrations respectively by 70, 45, and 60%, by total average. In the control valve application, the low-shear valve, which was located between the hydrocyclones and a compact flotation unit, reduced the oil-in-water concentration by 23%.\n In sum, the field installations have demonstrated that low-shear valves significantly and consistently reduce oil-in-water concentrations and thus improve the produced water quality. The results signify that low-shear valves may be used in debottlenecking separation and produced water treatment processes, reducing the environmental influence from produced water discharges. Because the low-shear technology enables processing of petroleum phases with less effort, energy, and chemicals, it also reduces emissions to air.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":" ","pages":"1-16"},"PeriodicalIF":1.4000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reviewing Cyclonic Low-Shear Choke and Control Valve Field Experiences\",\"authors\":\"T. Husveg, R. Husveg, Niels van Teeffelen, R. Verwey, Peter Guinee\",\"doi\":\"10.2118/205016-PA\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In hydrocarbon production and processing, choke and control valves mix and emulsify petroleum phases. The consequence is often that the efficiency of separation processes is affected and finally that the quality of oil and water phases is degraded. Over the last few years, low-shear valves targeting petroleum processes have emerged on the market.\\n This paper presents four separate live-fluid experiences from low-shear valve installations, each surveyed and documented by an independent third party. Three of the installations refer to choke valves, whereas the fourth installation refers to a control valve. For each installation, standard choke and control valves were used as reference valves. In terms of downstream separation efficiency, the low-shear choke valves reduced oil-in-water concentrations respectively by 70, 45, and 60%, by total average. In the control valve application, the low-shear valve, which was located between the hydrocyclones and a compact flotation unit, reduced the oil-in-water concentration by 23%.\\n In sum, the field installations have demonstrated that low-shear valves significantly and consistently reduce oil-in-water concentrations and thus improve the produced water quality. The results signify that low-shear valves may be used in debottlenecking separation and produced water treatment processes, reducing the environmental influence from produced water discharges. Because the low-shear technology enables processing of petroleum phases with less effort, energy, and chemicals, it also reduces emissions to air.\",\"PeriodicalId\":22071,\"journal\":{\"name\":\"Spe Production & Operations\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spe Production & Operations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/205016-PA\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spe Production & Operations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/205016-PA","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
Reviewing Cyclonic Low-Shear Choke and Control Valve Field Experiences
In hydrocarbon production and processing, choke and control valves mix and emulsify petroleum phases. The consequence is often that the efficiency of separation processes is affected and finally that the quality of oil and water phases is degraded. Over the last few years, low-shear valves targeting petroleum processes have emerged on the market.
This paper presents four separate live-fluid experiences from low-shear valve installations, each surveyed and documented by an independent third party. Three of the installations refer to choke valves, whereas the fourth installation refers to a control valve. For each installation, standard choke and control valves were used as reference valves. In terms of downstream separation efficiency, the low-shear choke valves reduced oil-in-water concentrations respectively by 70, 45, and 60%, by total average. In the control valve application, the low-shear valve, which was located between the hydrocyclones and a compact flotation unit, reduced the oil-in-water concentration by 23%.
In sum, the field installations have demonstrated that low-shear valves significantly and consistently reduce oil-in-water concentrations and thus improve the produced water quality. The results signify that low-shear valves may be used in debottlenecking separation and produced water treatment processes, reducing the environmental influence from produced water discharges. Because the low-shear technology enables processing of petroleum phases with less effort, energy, and chemicals, it also reduces emissions to air.
期刊介绍:
SPE Production & Operations includes papers on production operations, artificial lift, downhole equipment, formation damage control, multiphase flow, workovers, stimulation, facility design and operations, water treatment, project management, construction methods and equipment, and related PFC systems and emerging technologies.