Sonu Singh, Priya Vashisth, V. Meena, D. Kalyanasundaram
{"title":"Ti6Al4V ELI 3D打印多孔Neovius晶格上制备的纳米结构的细胞研究和持续药物递送","authors":"Sonu Singh, Priya Vashisth, V. Meena, D. Kalyanasundaram","doi":"10.1088/1748-605X/ac6922","DOIUrl":null,"url":null,"abstract":"Site-specific drug delivery has the potential to reduce drug dosage by 3- to 5-folds. Given the propensity of drugs used in the treatment of tuberculosis and cancers, the increased drug dosages via oral ingestion for several months to a few years of medication is often detrimental to the health of patients. In this study, the sustained delivery of drugs with multiscale structured novel Neovius lattices was achieved. 3D Neovius open cell lattices (NOCL) with porosities of 40%, 45%, and 50% were fabricated layer-by-layer on the laser bed fusion process. Micron-sized Ti6Al4V ELI powder was used for 3D printing. The Young’s modulus achieved from the novel Neovius lattices were in the range of 1.2–1.6 GPa, which is comparable to human cortical bone and helps to improve implant failure due to the stress shielding effect. To provide sustained drug delivery, nanotubes (NTs) were fabricated on NOCLs via high-voltage anodization. The osteogenic agent icariin was loaded onto the NOCL-NT samples and their release profiles were studied for 7 d. A significantly steady and slow release rate of 0.05% per hour of the drug was achieved using NOCL-NT. In addition, the initial burst release of NOCL-NT was 4 fold lower than that of the open-cell lattices without NTs. Cellular studies using MG63 human osteoblast-like cells were performed to determine their biocompatibility and osteogenesis which were analyzed using Calcein AM staining and Alamar Blue after 1, 5, and 7 d. 3D printed NOCL samples with NTs and with Icariin loaded NTs demonstrated a significant increase in cell proliferation as compared to as printed NOCL samples.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellular studies and sustained drug delivery via nanostructures fabricated on 3D printed porous Neovius lattices of Ti6Al4V ELI\",\"authors\":\"Sonu Singh, Priya Vashisth, V. Meena, D. Kalyanasundaram\",\"doi\":\"10.1088/1748-605X/ac6922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Site-specific drug delivery has the potential to reduce drug dosage by 3- to 5-folds. Given the propensity of drugs used in the treatment of tuberculosis and cancers, the increased drug dosages via oral ingestion for several months to a few years of medication is often detrimental to the health of patients. In this study, the sustained delivery of drugs with multiscale structured novel Neovius lattices was achieved. 3D Neovius open cell lattices (NOCL) with porosities of 40%, 45%, and 50% were fabricated layer-by-layer on the laser bed fusion process. Micron-sized Ti6Al4V ELI powder was used for 3D printing. The Young’s modulus achieved from the novel Neovius lattices were in the range of 1.2–1.6 GPa, which is comparable to human cortical bone and helps to improve implant failure due to the stress shielding effect. To provide sustained drug delivery, nanotubes (NTs) were fabricated on NOCLs via high-voltage anodization. The osteogenic agent icariin was loaded onto the NOCL-NT samples and their release profiles were studied for 7 d. A significantly steady and slow release rate of 0.05% per hour of the drug was achieved using NOCL-NT. In addition, the initial burst release of NOCL-NT was 4 fold lower than that of the open-cell lattices without NTs. Cellular studies using MG63 human osteoblast-like cells were performed to determine their biocompatibility and osteogenesis which were analyzed using Calcein AM staining and Alamar Blue after 1, 5, and 7 d. 3D printed NOCL samples with NTs and with Icariin loaded NTs demonstrated a significant increase in cell proliferation as compared to as printed NOCL samples.\",\"PeriodicalId\":9016,\"journal\":{\"name\":\"Biomedical materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ac6922\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ac6922","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Cellular studies and sustained drug delivery via nanostructures fabricated on 3D printed porous Neovius lattices of Ti6Al4V ELI
Site-specific drug delivery has the potential to reduce drug dosage by 3- to 5-folds. Given the propensity of drugs used in the treatment of tuberculosis and cancers, the increased drug dosages via oral ingestion for several months to a few years of medication is often detrimental to the health of patients. In this study, the sustained delivery of drugs with multiscale structured novel Neovius lattices was achieved. 3D Neovius open cell lattices (NOCL) with porosities of 40%, 45%, and 50% were fabricated layer-by-layer on the laser bed fusion process. Micron-sized Ti6Al4V ELI powder was used for 3D printing. The Young’s modulus achieved from the novel Neovius lattices were in the range of 1.2–1.6 GPa, which is comparable to human cortical bone and helps to improve implant failure due to the stress shielding effect. To provide sustained drug delivery, nanotubes (NTs) were fabricated on NOCLs via high-voltage anodization. The osteogenic agent icariin was loaded onto the NOCL-NT samples and their release profiles were studied for 7 d. A significantly steady and slow release rate of 0.05% per hour of the drug was achieved using NOCL-NT. In addition, the initial burst release of NOCL-NT was 4 fold lower than that of the open-cell lattices without NTs. Cellular studies using MG63 human osteoblast-like cells were performed to determine their biocompatibility and osteogenesis which were analyzed using Calcein AM staining and Alamar Blue after 1, 5, and 7 d. 3D printed NOCL samples with NTs and with Icariin loaded NTs demonstrated a significant increase in cell proliferation as compared to as printed NOCL samples.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters