光滑三折线上最小对数差异的等价猜想

IF 0.9 1区 数学 Q2 MATHEMATICS
M. Kawakita
{"title":"光滑三折线上最小对数差异的等价猜想","authors":"M. Kawakita","doi":"10.1090/jag/757","DOIUrl":null,"url":null,"abstract":"On smooth varieties, the ACC for minimal log discrepancies is equivalent to the boundedness of the log discrepancy of some divisor which computes the minimal log discrepancy. In dimension three, we reduce it to the case when the boundary is the product of a canonical part and the maximal ideal to some power. We prove the reduced assertion when the log canonical threshold of the maximal ideal is either at most one-half or at least one.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"On equivalent conjectures for minimal log discrepancies on smooth threefolds\",\"authors\":\"M. Kawakita\",\"doi\":\"10.1090/jag/757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On smooth varieties, the ACC for minimal log discrepancies is equivalent to the boundedness of the log discrepancy of some divisor which computes the minimal log discrepancy. In dimension three, we reduce it to the case when the boundary is the product of a canonical part and the maximal ideal to some power. We prove the reduced assertion when the log canonical threshold of the maximal ideal is either at most one-half or at least one.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/757\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/757","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17

摘要

在光滑变种上,最小对数差异的ACC等价于某个除数的对数差异的有界性,该除数计算最小对数差异。在三维中,我们将其简化为边界是正则部分和极大理想的乘积的情况。当最大理想的对数规范阈值至多为二分之一或至少为一时,我们证明了减少断言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On equivalent conjectures for minimal log discrepancies on smooth threefolds
On smooth varieties, the ACC for minimal log discrepancies is equivalent to the boundedness of the log discrepancy of some divisor which computes the minimal log discrepancy. In dimension three, we reduce it to the case when the boundary is the product of a canonical part and the maximal ideal to some power. We prove the reduced assertion when the log canonical threshold of the maximal ideal is either at most one-half or at least one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信