{"title":"二次分配问题的改进antlion优化算法","authors":"Haydar Kiliç, Ugur Y Yuzgec","doi":"10.22452/mjcs.vol34no1.3","DOIUrl":null,"url":null,"abstract":"The Antlion Optimization (ALO) algorithm is a meta-heuristic optimization algorithm based on the hunting of ants by antlions. The basic inadequacy of this algorithm is that it has long run time because of the random walk model used for the ant's movement. We improved some mechanisms in ALO algorithm, such as ants' random walking, reproduction, sliding ants towards antlion, elitism, and selection procedure. This proposed algorithm is called Improved Antlion Optimization (IALO) algorithm. To show the performance of the proposed IALO algorithm, we used different measurement metrics, such as mean best, standard deviation, optimality, accuracy, CPU time, and number of function evaluations (NFE). The proposed IALO algorithm was tested for different benchmark test functions taken from the literature. There are no studies regarding time analysis of ALO algorithm found in the literature. This study firstly aims to demonstrate the success of the proposed IALO algorithm especially in runtime analysis. Secondly, the IALO algorithm was also applied to the Quadratic Assignment Problem (QAP) known as a difficult combinatorial optimization problem. In QAP tests, the performance of the IALO algorithm was compared with the performances of the classic ALO algorithm and 14 well-known and recent meta-heuristic algorithms. The results of the benchmark test functions show that IALO algorithm is able to provide very competitive results in terms of mean best/standard deviation, optimality, accuracy, CPU time and NFE metrics. The CPU time results prove that IALO algorithm is faster than the classic ALO algorithm. As a result of the QAP tests, the proposed IALO algorithm has the best performance according to the mean cost, worst cost and standard deviation. The source codes of QAP with the proposed IALO algorithm are publicly available at https://github.com/uguryuzgec/QAP-with-IALO.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"IMPROVED ANTLION OPTIMIZATION ALGORITHM FOR QUADRATIC ASSIGNMENT PROBLEM\",\"authors\":\"Haydar Kiliç, Ugur Y Yuzgec\",\"doi\":\"10.22452/mjcs.vol34no1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Antlion Optimization (ALO) algorithm is a meta-heuristic optimization algorithm based on the hunting of ants by antlions. The basic inadequacy of this algorithm is that it has long run time because of the random walk model used for the ant's movement. We improved some mechanisms in ALO algorithm, such as ants' random walking, reproduction, sliding ants towards antlion, elitism, and selection procedure. This proposed algorithm is called Improved Antlion Optimization (IALO) algorithm. To show the performance of the proposed IALO algorithm, we used different measurement metrics, such as mean best, standard deviation, optimality, accuracy, CPU time, and number of function evaluations (NFE). The proposed IALO algorithm was tested for different benchmark test functions taken from the literature. There are no studies regarding time analysis of ALO algorithm found in the literature. This study firstly aims to demonstrate the success of the proposed IALO algorithm especially in runtime analysis. Secondly, the IALO algorithm was also applied to the Quadratic Assignment Problem (QAP) known as a difficult combinatorial optimization problem. In QAP tests, the performance of the IALO algorithm was compared with the performances of the classic ALO algorithm and 14 well-known and recent meta-heuristic algorithms. The results of the benchmark test functions show that IALO algorithm is able to provide very competitive results in terms of mean best/standard deviation, optimality, accuracy, CPU time and NFE metrics. The CPU time results prove that IALO algorithm is faster than the classic ALO algorithm. As a result of the QAP tests, the proposed IALO algorithm has the best performance according to the mean cost, worst cost and standard deviation. The source codes of QAP with the proposed IALO algorithm are publicly available at https://github.com/uguryuzgec/QAP-with-IALO.\",\"PeriodicalId\":49894,\"journal\":{\"name\":\"Malaysian Journal of Computer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.22452/mjcs.vol34no1.3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.vol34no1.3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
IMPROVED ANTLION OPTIMIZATION ALGORITHM FOR QUADRATIC ASSIGNMENT PROBLEM
The Antlion Optimization (ALO) algorithm is a meta-heuristic optimization algorithm based on the hunting of ants by antlions. The basic inadequacy of this algorithm is that it has long run time because of the random walk model used for the ant's movement. We improved some mechanisms in ALO algorithm, such as ants' random walking, reproduction, sliding ants towards antlion, elitism, and selection procedure. This proposed algorithm is called Improved Antlion Optimization (IALO) algorithm. To show the performance of the proposed IALO algorithm, we used different measurement metrics, such as mean best, standard deviation, optimality, accuracy, CPU time, and number of function evaluations (NFE). The proposed IALO algorithm was tested for different benchmark test functions taken from the literature. There are no studies regarding time analysis of ALO algorithm found in the literature. This study firstly aims to demonstrate the success of the proposed IALO algorithm especially in runtime analysis. Secondly, the IALO algorithm was also applied to the Quadratic Assignment Problem (QAP) known as a difficult combinatorial optimization problem. In QAP tests, the performance of the IALO algorithm was compared with the performances of the classic ALO algorithm and 14 well-known and recent meta-heuristic algorithms. The results of the benchmark test functions show that IALO algorithm is able to provide very competitive results in terms of mean best/standard deviation, optimality, accuracy, CPU time and NFE metrics. The CPU time results prove that IALO algorithm is faster than the classic ALO algorithm. As a result of the QAP tests, the proposed IALO algorithm has the best performance according to the mean cost, worst cost and standard deviation. The source codes of QAP with the proposed IALO algorithm are publicly available at https://github.com/uguryuzgec/QAP-with-IALO.
期刊介绍:
The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication. The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus