(2+1)维Sawada-Kotera方程的新孤子波解

IF 13 1区 工程技术 Q1 ENGINEERING, MARINE
Kong Debin , Hadi Rezazadeh , Najib Ullah , Javad Vahidi , Kalim U. Tariq , Lanre Akinyemi
{"title":"(2+1)维Sawada-Kotera方程的新孤子波解","authors":"Kong Debin ,&nbsp;Hadi Rezazadeh ,&nbsp;Najib Ullah ,&nbsp;Javad Vahidi ,&nbsp;Kalim U. Tariq ,&nbsp;Lanre Akinyemi","doi":"10.1016/j.joes.2022.03.007","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we studied a (2 + 1)-dimensional Sawada-Kotera equation (SKE). This model depicts nonlinear wave processes in shallow water, fluid dynamics, ion-acoustic waves in plasmas and other phenomena. A couple of well-established techniques, the Bäcklund transformation based on the modified Kudryashov method, and the Sardar-sub equation method are applied to obtain the soliton wave solution to the (2 + 1)-dimensional structure. To illustrate the behavior of the nonlinear model in an appealing fashion, a variety of travelling wave solutions are formed, such as contour, 2D, and 3D plots. The proposed approaches are proved more convenient and dominant for getting analytical solutions and can also be implemented to a variety of physical models representing nonlinear wave phenomena.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"New soliton wave solutions of a (2 + 1)-dimensional Sawada-Kotera equation\",\"authors\":\"Kong Debin ,&nbsp;Hadi Rezazadeh ,&nbsp;Najib Ullah ,&nbsp;Javad Vahidi ,&nbsp;Kalim U. Tariq ,&nbsp;Lanre Akinyemi\",\"doi\":\"10.1016/j.joes.2022.03.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we studied a (2 + 1)-dimensional Sawada-Kotera equation (SKE). This model depicts nonlinear wave processes in shallow water, fluid dynamics, ion-acoustic waves in plasmas and other phenomena. A couple of well-established techniques, the Bäcklund transformation based on the modified Kudryashov method, and the Sardar-sub equation method are applied to obtain the soliton wave solution to the (2 + 1)-dimensional structure. To illustrate the behavior of the nonlinear model in an appealing fashion, a variety of travelling wave solutions are formed, such as contour, 2D, and 3D plots. The proposed approaches are proved more convenient and dominant for getting analytical solutions and can also be implemented to a variety of physical models representing nonlinear wave phenomena.</p></div>\",\"PeriodicalId\":48514,\"journal\":{\"name\":\"Journal of Ocean Engineering and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ocean Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468013322000560\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468013322000560","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了一个(2+1)维Sawada-Kotera方程。该模型描述了浅水中的非线性波动过程、流体动力学、等离子体中的离子声波和其他现象。应用两种成熟的技术,基于改进的Kudryashov方法的Bäcklund变换和Sardar子方程方法,获得了(2+1)维结构的孤立波解。为了以吸引人的方式说明非线性模型的行为,形成了各种行波解,如等高线图、二维图和三维图。所提出的方法被证明对于获得解析解更方便和更具优势,并且也可以应用于表示非线性波动现象的各种物理模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New soliton wave solutions of a (2 + 1)-dimensional Sawada-Kotera equation

In this work, we studied a (2 + 1)-dimensional Sawada-Kotera equation (SKE). This model depicts nonlinear wave processes in shallow water, fluid dynamics, ion-acoustic waves in plasmas and other phenomena. A couple of well-established techniques, the Bäcklund transformation based on the modified Kudryashov method, and the Sardar-sub equation method are applied to obtain the soliton wave solution to the (2 + 1)-dimensional structure. To illustrate the behavior of the nonlinear model in an appealing fashion, a variety of travelling wave solutions are formed, such as contour, 2D, and 3D plots. The proposed approaches are proved more convenient and dominant for getting analytical solutions and can also be implemented to a variety of physical models representing nonlinear wave phenomena.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
19.70%
发文量
224
审稿时长
29 days
期刊介绍: The Journal of Ocean Engineering and Science (JOES) serves as a platform for disseminating original research and advancements in the realm of ocean engineering and science. JOES encourages the submission of papers covering various aspects of ocean engineering and science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信