{"title":"大陆洪泛玄武岩中co2矿物储存的潜力——PHREEQC批式和一维扩散反应模拟","authors":"Thi Hai Van Pham, Per Aagaard, Helge Hellevang","doi":"10.1186/1467-4866-13-5","DOIUrl":null,"url":null,"abstract":"<p>Continental flood basalts (CFB) are considered as potential CO<sub>2</sub> storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO<sub>2</sub> point emission sources.</p><p>Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO<sub>2</sub> in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass) and the local equilibrium assumption for secondary phases (weathering products). The simulations were divided into closed-system batch simulations at a constant CO<sub>2</sub> pressure of 100?bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H<sub>2</sub>O in scCO<sub>2</sub>, and finally 1D reactive diffusion simulations giving reactivity at CO<sub>2</sub> pressures varying from 0 to 100?bar.</p><p>Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO<sub>2</sub> mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40?C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 – 100?C), magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO<sub>2</sub> stored as solid carbonates, if CO<sub>2</sub> is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO<sub>2</sub> phase with limited amount of water, the total carbonation potential is limited by the amount of water present for hydration of basalt.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"13 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2012-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1467-4866-13-5","citationCount":"53","resultStr":"{\"title\":\"On the potential for CO2mineral storage in continental flood basalts – PHREEQC batch- and 1D diffusion–reaction simulations\",\"authors\":\"Thi Hai Van Pham, Per Aagaard, Helge Hellevang\",\"doi\":\"10.1186/1467-4866-13-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Continental flood basalts (CFB) are considered as potential CO<sub>2</sub> storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO<sub>2</sub> point emission sources.</p><p>Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO<sub>2</sub> in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass) and the local equilibrium assumption for secondary phases (weathering products). The simulations were divided into closed-system batch simulations at a constant CO<sub>2</sub> pressure of 100?bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H<sub>2</sub>O in scCO<sub>2</sub>, and finally 1D reactive diffusion simulations giving reactivity at CO<sub>2</sub> pressures varying from 0 to 100?bar.</p><p>Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO<sub>2</sub> mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40?C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 – 100?C), magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO<sub>2</sub> stored as solid carbonates, if CO<sub>2</sub> is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO<sub>2</sub> phase with limited amount of water, the total carbonation potential is limited by the amount of water present for hydration of basalt.</p>\",\"PeriodicalId\":12694,\"journal\":{\"name\":\"Geochemical Transactions\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2012-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1467-4866-13-5\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemical Transactions\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/1467-4866-13-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Transactions","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/1467-4866-13-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
On the potential for CO2mineral storage in continental flood basalts – PHREEQC batch- and 1D diffusion–reaction simulations
Continental flood basalts (CFB) are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources.
Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass) and the local equilibrium assumption for secondary phases (weathering products). The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100?bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100?bar.
Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40?C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 – 100?C), magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present for hydration of basalt.
期刊介绍:
Geochemical Transactions publishes high-quality research in all areas of chemistry as it relates to materials and processes occurring in terrestrial and extraterrestrial systems.