FP-Radar:纵向测量和浏览器指纹的早期检测

Pouneh Nikkhah Bahrami, Umar Iqbal, Zubair Shafiq
{"title":"FP-Radar:纵向测量和浏览器指纹的早期检测","authors":"Pouneh Nikkhah Bahrami, Umar Iqbal, Zubair Shafiq","doi":"10.2478/popets-2022-0056","DOIUrl":null,"url":null,"abstract":"Abstract Browser fingerprinting is a stateless tracking technique that aims to combine information exposed by multiple different web APIs to create a unique identifier for tracking users across the web. Over the last decade, trackers have abused several existing and newly proposed web APIs to further enhance the browser fingerprint. Existing approaches are limited to detecting a specific fingerprinting technique(s) at a particular point in time. Thus, they are unable to systematically detect novel fingerprinting techniques that abuse different web APIs. In this paper, we propose FP-Radar, a machine learning approach that leverages longitudinal measurements of web API usage on top-100K websites over the last decade for early detection of new and evolving browser fingerprinting techniques. The results show that FP-Radar is able to early detect the abuse of newly introduced properties of already known (e.g., WebGL, Sensor) and as well as previously unknown (e.g., Gamepad, Clipboard) APIs for browser fingerprinting. To the best of our knowledge, FP-Radar is the first to detect the abuse of the Visibility API for ephemeral fingerprinting in the wild.","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":"2022 1","pages":"557 - 577"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting\",\"authors\":\"Pouneh Nikkhah Bahrami, Umar Iqbal, Zubair Shafiq\",\"doi\":\"10.2478/popets-2022-0056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Browser fingerprinting is a stateless tracking technique that aims to combine information exposed by multiple different web APIs to create a unique identifier for tracking users across the web. Over the last decade, trackers have abused several existing and newly proposed web APIs to further enhance the browser fingerprint. Existing approaches are limited to detecting a specific fingerprinting technique(s) at a particular point in time. Thus, they are unable to systematically detect novel fingerprinting techniques that abuse different web APIs. In this paper, we propose FP-Radar, a machine learning approach that leverages longitudinal measurements of web API usage on top-100K websites over the last decade for early detection of new and evolving browser fingerprinting techniques. The results show that FP-Radar is able to early detect the abuse of newly introduced properties of already known (e.g., WebGL, Sensor) and as well as previously unknown (e.g., Gamepad, Clipboard) APIs for browser fingerprinting. To the best of our knowledge, FP-Radar is the first to detect the abuse of the Visibility API for ephemeral fingerprinting in the wild.\",\"PeriodicalId\":74556,\"journal\":{\"name\":\"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium\",\"volume\":\"2022 1\",\"pages\":\"557 - 577\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/popets-2022-0056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2022-0056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

浏览器指纹是一种无状态跟踪技术,旨在将多个不同的web api暴露的信息组合在一起,以创建一个唯一的标识符,用于跟踪web上的用户。在过去的十年里,追踪器滥用了几个现有的和新提出的web api来进一步增强浏览器指纹。现有的方法仅限于在特定时间点检测特定的指纹技术。因此,他们无法系统地检测滥用不同web api的新型指纹技术。在本文中,我们提出了FP-Radar,这是一种机器学习方法,它利用过去十年中top-100K网站的web API使用情况的纵向测量来早期检测新的和不断发展的浏览器指纹技术。结果表明,FP-Radar能够早期检测到新引入的已知属性(例如,WebGL, Sensor)以及以前未知的浏览器指纹api(例如,Gamepad, Clipboard)的滥用。据我们所知,FP-Radar是第一个检测到在野外滥用可见性API的短暂指纹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting
Abstract Browser fingerprinting is a stateless tracking technique that aims to combine information exposed by multiple different web APIs to create a unique identifier for tracking users across the web. Over the last decade, trackers have abused several existing and newly proposed web APIs to further enhance the browser fingerprint. Existing approaches are limited to detecting a specific fingerprinting technique(s) at a particular point in time. Thus, they are unable to systematically detect novel fingerprinting techniques that abuse different web APIs. In this paper, we propose FP-Radar, a machine learning approach that leverages longitudinal measurements of web API usage on top-100K websites over the last decade for early detection of new and evolving browser fingerprinting techniques. The results show that FP-Radar is able to early detect the abuse of newly introduced properties of already known (e.g., WebGL, Sensor) and as well as previously unknown (e.g., Gamepad, Clipboard) APIs for browser fingerprinting. To the best of our knowledge, FP-Radar is the first to detect the abuse of the Visibility API for ephemeral fingerprinting in the wild.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信