Cheng-Yun Ding, Li Chen, Li-Hua Zhang, Zheng-Yuan Xue
{"title":"动态校正非绝热几何量子计算","authors":"Cheng-Yun Ding, Li Chen, Li-Hua Zhang, Zheng-Yuan Xue","doi":"10.1007/s11467-023-1322-2","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, nonadiabatic geometric quantum computation has been received great attentions, due to its fast operation and intrinsic error resilience. However, compared with the corresponding dynamical gates, the robustness of implemented nonadiabatic geometric gates based on the conventional single-loop geometric scheme still has the same order of magnitude due to the requirement of strict multi-segment geometric controls, and the inherent geometric fault-tolerance characteristic is not fully explored. Here, we present an effective geometric scheme combined with a general dynamical-corrected technique, with which the super-robust nonadiabatic geometric quantum gates can be constructed over the conventional single-loop geometric and two-loop composite-pulse geometric strategies, in terms of resisting the systematic error, i.e., <i>σ</i><sub><i>x</i></sub> error. In addition, combined with the decoherence-free subspace (DFS) coding, the resulting geometric gates can also effectively suppress the <i>σ</i><sub><i>z</i></sub> error caused by the collective dephasing. Notably, our protocol is a general one with simple experimental setups, which can be potentially implemented in different quantum systems, such as Rydberg atoms, trapped ions and superconducting qubits. These results indicate that our scheme represents a promising way to explore large-scale fault-tolerant quantum computation.\n</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"18 6","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical-corrected nonadiabatic geometric quantum computation\",\"authors\":\"Cheng-Yun Ding, Li Chen, Li-Hua Zhang, Zheng-Yuan Xue\",\"doi\":\"10.1007/s11467-023-1322-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, nonadiabatic geometric quantum computation has been received great attentions, due to its fast operation and intrinsic error resilience. However, compared with the corresponding dynamical gates, the robustness of implemented nonadiabatic geometric gates based on the conventional single-loop geometric scheme still has the same order of magnitude due to the requirement of strict multi-segment geometric controls, and the inherent geometric fault-tolerance characteristic is not fully explored. Here, we present an effective geometric scheme combined with a general dynamical-corrected technique, with which the super-robust nonadiabatic geometric quantum gates can be constructed over the conventional single-loop geometric and two-loop composite-pulse geometric strategies, in terms of resisting the systematic error, i.e., <i>σ</i><sub><i>x</i></sub> error. In addition, combined with the decoherence-free subspace (DFS) coding, the resulting geometric gates can also effectively suppress the <i>σ</i><sub><i>z</i></sub> error caused by the collective dephasing. Notably, our protocol is a general one with simple experimental setups, which can be potentially implemented in different quantum systems, such as Rydberg atoms, trapped ions and superconducting qubits. These results indicate that our scheme represents a promising way to explore large-scale fault-tolerant quantum computation.\\n</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>\",\"PeriodicalId\":573,\"journal\":{\"name\":\"Frontiers of Physics\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11467-023-1322-2\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1322-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Recently, nonadiabatic geometric quantum computation has been received great attentions, due to its fast operation and intrinsic error resilience. However, compared with the corresponding dynamical gates, the robustness of implemented nonadiabatic geometric gates based on the conventional single-loop geometric scheme still has the same order of magnitude due to the requirement of strict multi-segment geometric controls, and the inherent geometric fault-tolerance characteristic is not fully explored. Here, we present an effective geometric scheme combined with a general dynamical-corrected technique, with which the super-robust nonadiabatic geometric quantum gates can be constructed over the conventional single-loop geometric and two-loop composite-pulse geometric strategies, in terms of resisting the systematic error, i.e., σx error. In addition, combined with the decoherence-free subspace (DFS) coding, the resulting geometric gates can also effectively suppress the σz error caused by the collective dephasing. Notably, our protocol is a general one with simple experimental setups, which can be potentially implemented in different quantum systems, such as Rydberg atoms, trapped ions and superconducting qubits. These results indicate that our scheme represents a promising way to explore large-scale fault-tolerant quantum computation.
期刊介绍:
Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include:
Quantum computation and quantum information
Atomic, molecular, and optical physics
Condensed matter physics, material sciences, and interdisciplinary research
Particle, nuclear physics, astrophysics, and cosmology
The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.