小剂量异氟醚全麻诱导海马CA1单细胞水平神经信息的多通道微电极检测

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary
Ruilin Hu , Penghui Fan , Yiding Wang , Jin Shan , Luyi Jing , Wei Xu , Fan Mo , Mixia Wang , Yan Luo , Ying Wang , Xinxia Cai , Jinping Luo
{"title":"小剂量异氟醚全麻诱导海马CA1单细胞水平神经信息的多通道微电极检测","authors":"Ruilin Hu ,&nbsp;Penghui Fan ,&nbsp;Yiding Wang ,&nbsp;Jin Shan ,&nbsp;Luyi Jing ,&nbsp;Wei Xu ,&nbsp;Fan Mo ,&nbsp;Mixia Wang ,&nbsp;Yan Luo ,&nbsp;Ying Wang ,&nbsp;Xinxia Cai ,&nbsp;Jinping Luo","doi":"10.1016/j.fmre.2023.05.015","DOIUrl":null,"url":null,"abstract":"<div><div>Timely monitoring of anesthesia status during surgery is important to prevent an overdose of isoflurane anesthesia. Therefore, in-depth studies of the neural mechanisms of anesthetics are warranted. Hippocampal CA1 plays an important role during anesthesia. Currently, a high spatiotemporal resolution microdevice technology for the accurate detection of deep brain nuclei is lacking. In this research, four-shank 32-channel implantable microelectrode arrays (MEAs) were developed for the real-time recording of single-cell level neural information in rat hippocampal CA1. Platinum nanoparticles were modified onto the microelectrodes to substantially enhance the electrical properties of the microelectrode arrays. The modified MEAs exhibited low impedance (11.5 ± 1 kΩ) and small phase delay (-18.5° ± 2.54°), which enabled the MEAs to record single-cell level neural information with a high signal-to-noise ratio. The MEAs were implanted into the CA1 nuclei of the anesthetized rats, and the electrophysiological signals were recorded under different degrees of anesthesia mediated by low-dose concentrations of isoflurane. The recorded signals were analyzed in depth. Isoflurane caused an inhibition of spike firing rate in hippocampal CA1 neurons, while inducing low-frequency oscillations in CA1, thus enhancing the low-frequency power of local field potentials. In this manner, the spike firing rate and the power of local field potentials in CA1 could characterize the degree of isoflurane anesthesia. The present study provides a technical tool to study the neural mechanisms of isoflurane anesthesia and a research method for monitoring the depth of isoflurane anesthesia in clinical practice.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"5 1","pages":"Pages 72-81"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-channel microelectrode arrays for detection of single-cell level neural information in the hippocampus CA1 under general anesthesia induced by low-dose isoflurane\",\"authors\":\"Ruilin Hu ,&nbsp;Penghui Fan ,&nbsp;Yiding Wang ,&nbsp;Jin Shan ,&nbsp;Luyi Jing ,&nbsp;Wei Xu ,&nbsp;Fan Mo ,&nbsp;Mixia Wang ,&nbsp;Yan Luo ,&nbsp;Ying Wang ,&nbsp;Xinxia Cai ,&nbsp;Jinping Luo\",\"doi\":\"10.1016/j.fmre.2023.05.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Timely monitoring of anesthesia status during surgery is important to prevent an overdose of isoflurane anesthesia. Therefore, in-depth studies of the neural mechanisms of anesthetics are warranted. Hippocampal CA1 plays an important role during anesthesia. Currently, a high spatiotemporal resolution microdevice technology for the accurate detection of deep brain nuclei is lacking. In this research, four-shank 32-channel implantable microelectrode arrays (MEAs) were developed for the real-time recording of single-cell level neural information in rat hippocampal CA1. Platinum nanoparticles were modified onto the microelectrodes to substantially enhance the electrical properties of the microelectrode arrays. The modified MEAs exhibited low impedance (11.5 ± 1 kΩ) and small phase delay (-18.5° ± 2.54°), which enabled the MEAs to record single-cell level neural information with a high signal-to-noise ratio. The MEAs were implanted into the CA1 nuclei of the anesthetized rats, and the electrophysiological signals were recorded under different degrees of anesthesia mediated by low-dose concentrations of isoflurane. The recorded signals were analyzed in depth. Isoflurane caused an inhibition of spike firing rate in hippocampal CA1 neurons, while inducing low-frequency oscillations in CA1, thus enhancing the low-frequency power of local field potentials. In this manner, the spike firing rate and the power of local field potentials in CA1 could characterize the degree of isoflurane anesthesia. The present study provides a technical tool to study the neural mechanisms of isoflurane anesthesia and a research method for monitoring the depth of isoflurane anesthesia in clinical practice.</div></div>\",\"PeriodicalId\":34602,\"journal\":{\"name\":\"Fundamental Research\",\"volume\":\"5 1\",\"pages\":\"Pages 72-81\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667325823001802\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325823001802","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-channel microelectrode arrays for detection of single-cell level neural information in the hippocampus CA1 under general anesthesia induced by low-dose isoflurane

Multi-channel microelectrode arrays for detection of single-cell level neural information in the hippocampus CA1 under general anesthesia induced by low-dose isoflurane
Timely monitoring of anesthesia status during surgery is important to prevent an overdose of isoflurane anesthesia. Therefore, in-depth studies of the neural mechanisms of anesthetics are warranted. Hippocampal CA1 plays an important role during anesthesia. Currently, a high spatiotemporal resolution microdevice technology for the accurate detection of deep brain nuclei is lacking. In this research, four-shank 32-channel implantable microelectrode arrays (MEAs) were developed for the real-time recording of single-cell level neural information in rat hippocampal CA1. Platinum nanoparticles were modified onto the microelectrodes to substantially enhance the electrical properties of the microelectrode arrays. The modified MEAs exhibited low impedance (11.5 ± 1 kΩ) and small phase delay (-18.5° ± 2.54°), which enabled the MEAs to record single-cell level neural information with a high signal-to-noise ratio. The MEAs were implanted into the CA1 nuclei of the anesthetized rats, and the electrophysiological signals were recorded under different degrees of anesthesia mediated by low-dose concentrations of isoflurane. The recorded signals were analyzed in depth. Isoflurane caused an inhibition of spike firing rate in hippocampal CA1 neurons, while inducing low-frequency oscillations in CA1, thus enhancing the low-frequency power of local field potentials. In this manner, the spike firing rate and the power of local field potentials in CA1 could characterize the degree of isoflurane anesthesia. The present study provides a technical tool to study the neural mechanisms of isoflurane anesthesia and a research method for monitoring the depth of isoflurane anesthesia in clinical practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信