Catoids与模态卷积代数

IF 0.6 4区 数学 Q3 MATHEMATICS
Uli Fahrenberg, Christian Johansen, Georg Struth, Krzysztof Ziemiański
{"title":"Catoids与模态卷积代数","authors":"Uli Fahrenberg,&nbsp;Christian Johansen,&nbsp;Georg Struth,&nbsp;Krzysztof Ziemiański","doi":"10.1007/s00012-023-00805-9","DOIUrl":null,"url":null,"abstract":"<div><p>We show how modal quantales arise as convolution algebras <span>\\(Q^X\\)</span> of functions from catoids <i>X</i>, multisemigroups equipped with source and target maps, into modal quantales value or weight quantales <i>Q</i>. In the tradition of boolean algebras with operators we study modal correspondences between algebraic laws in <i>X</i>, <i>Q</i> and <span>\\(Q^X\\)</span>. The catoids introduced generalise Schweizer and Sklar’s function systems and single-set categories to structures isomorphic to algebras of ternary relations, as they are used for boolean algebras with operators and substructural logics. Our correspondence results support a generic construction of weighted modal quantales from catoids. This construction is illustrated by many examples. We also relate our results to reasoning with stochastic matrices or probabilistic predicate transformers.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-023-00805-9.pdf","citationCount":"4","resultStr":"{\"title\":\"Catoids and modal convolution algebras\",\"authors\":\"Uli Fahrenberg,&nbsp;Christian Johansen,&nbsp;Georg Struth,&nbsp;Krzysztof Ziemiański\",\"doi\":\"10.1007/s00012-023-00805-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show how modal quantales arise as convolution algebras <span>\\\\(Q^X\\\\)</span> of functions from catoids <i>X</i>, multisemigroups equipped with source and target maps, into modal quantales value or weight quantales <i>Q</i>. In the tradition of boolean algebras with operators we study modal correspondences between algebraic laws in <i>X</i>, <i>Q</i> and <span>\\\\(Q^X\\\\)</span>. The catoids introduced generalise Schweizer and Sklar’s function systems and single-set categories to structures isomorphic to algebras of ternary relations, as they are used for boolean algebras with operators and substructural logics. Our correspondence results support a generic construction of weighted modal quantales from catoids. This construction is illustrated by many examples. We also relate our results to reasoning with stochastic matrices or probabilistic predicate transformers.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00012-023-00805-9.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-023-00805-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-023-00805-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们展示了模态量子是如何作为函数的卷积代数\(Q^X\)从catoid X(配备有源映射和目标映射的多重半群)产生为模态量子值或权重量子Q的。在具有运算符的布尔代数的传统中,我们研究了X、Q和\(Q^ X\)中代数定律之间的模态对应关系。catoid将广义Schweizer和Sklar的函数系统和单集范畴引入同构于三元关系代数的结构,因为它们用于具有算子和子结构逻辑的布尔代数。我们的对应结果支持了类集加权模态量子的一般构造。这种结构有很多例子说明。我们还将我们的结果与随机矩阵或概率谓词转换器的推理联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catoids and modal convolution algebras

We show how modal quantales arise as convolution algebras \(Q^X\) of functions from catoids X, multisemigroups equipped with source and target maps, into modal quantales value or weight quantales Q. In the tradition of boolean algebras with operators we study modal correspondences between algebraic laws in X, Q and \(Q^X\). The catoids introduced generalise Schweizer and Sklar’s function systems and single-set categories to structures isomorphic to algebras of ternary relations, as they are used for boolean algebras with operators and substructural logics. Our correspondence results support a generic construction of weighted modal quantales from catoids. This construction is illustrated by many examples. We also relate our results to reasoning with stochastic matrices or probabilistic predicate transformers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信