Dai Yuchen, Song Manxiang, Jin Donghai, G. Xingmin, Liu Xiaoheng
{"title":"体积效应对跨声速压气机瞬态特性的影响","authors":"Dai Yuchen, Song Manxiang, Jin Donghai, G. Xingmin, Liu Xiaoheng","doi":"10.1515/tjj-2023-0013","DOIUrl":null,"url":null,"abstract":"Abstract The significance of the volume effect on the compressor performance during acceleration and deceleration has received limited attention, despite its demonstrated importance in compressor flow instabilities. To better understand this effect, the in-house simulation program CAM (a modular transient simulator) is used to investigate the volume effect on the compressor transient performance. The modeling procedure is derived from Greziter’s lumped parameter approach and the accuracy of the simulation model is verified by experimental data. This study presents a comprehensive comparison and explanation of variations in compressor transient behavior observed under different conditions, including different shaft speed change rates, compressor volume sizes, and operating speeds. The relative difference between the compressor inlet and outlet mass flow is identified as the key factor contributing to these discrepancies. In addition, a simplified analytical model is developed to provide a basic description of the compressor operating line during acceleration and deceleration, which also provides additional support for the validity of the numerical results. This study systematically establishes the dynamic dependencies between shaft speed change, pressure and mass flow change, offering critical information for ensuring the safety of compressors during transient operation.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of volume effect on the transient behavior of a transonic compressor\",\"authors\":\"Dai Yuchen, Song Manxiang, Jin Donghai, G. Xingmin, Liu Xiaoheng\",\"doi\":\"10.1515/tjj-2023-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The significance of the volume effect on the compressor performance during acceleration and deceleration has received limited attention, despite its demonstrated importance in compressor flow instabilities. To better understand this effect, the in-house simulation program CAM (a modular transient simulator) is used to investigate the volume effect on the compressor transient performance. The modeling procedure is derived from Greziter’s lumped parameter approach and the accuracy of the simulation model is verified by experimental data. This study presents a comprehensive comparison and explanation of variations in compressor transient behavior observed under different conditions, including different shaft speed change rates, compressor volume sizes, and operating speeds. The relative difference between the compressor inlet and outlet mass flow is identified as the key factor contributing to these discrepancies. In addition, a simplified analytical model is developed to provide a basic description of the compressor operating line during acceleration and deceleration, which also provides additional support for the validity of the numerical results. This study systematically establishes the dynamic dependencies between shaft speed change, pressure and mass flow change, offering critical information for ensuring the safety of compressors during transient operation.\",\"PeriodicalId\":50284,\"journal\":{\"name\":\"International Journal of Turbo & Jet-Engines\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbo & Jet-Engines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/tjj-2023-0013\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2023-0013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
The role of volume effect on the transient behavior of a transonic compressor
Abstract The significance of the volume effect on the compressor performance during acceleration and deceleration has received limited attention, despite its demonstrated importance in compressor flow instabilities. To better understand this effect, the in-house simulation program CAM (a modular transient simulator) is used to investigate the volume effect on the compressor transient performance. The modeling procedure is derived from Greziter’s lumped parameter approach and the accuracy of the simulation model is verified by experimental data. This study presents a comprehensive comparison and explanation of variations in compressor transient behavior observed under different conditions, including different shaft speed change rates, compressor volume sizes, and operating speeds. The relative difference between the compressor inlet and outlet mass flow is identified as the key factor contributing to these discrepancies. In addition, a simplified analytical model is developed to provide a basic description of the compressor operating line during acceleration and deceleration, which also provides additional support for the validity of the numerical results. This study systematically establishes the dynamic dependencies between shaft speed change, pressure and mass flow change, offering critical information for ensuring the safety of compressors during transient operation.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.