Sara Bajelani, Naeimeh Enayatizamir, Ali Beheshti Ale Agha, Rouhallah Sharifi
{"title":"一些微生物分离物在柴油烃类去除、生物表面活性剂生产和生物膜形成方面的潜力","authors":"Sara Bajelani, Naeimeh Enayatizamir, Ali Beheshti Ale Agha, Rouhallah Sharifi","doi":"10.1007/s40201-023-00868-9","DOIUrl":null,"url":null,"abstract":"<div><p>Potential of <i>Arthrobacter citreus</i> B27Pet, <i>Bacillus thuringiensis</i> B48Pet and <i>Candida catnulata</i> to produce biosurfactant using four different carbon sources (naphthalene, hexadecane, diesel and petroleum crude oil) was investigated. Removal of petroleum crude oil from aqueous culture and degradation of diesel were also determined using single and mixed culture of strains. The biofilm existence in single and mixed culture of strains was considered using naphthalene, hexadecane and diesel in culture medium. Cell surface hydrophobicity of <i>A. citreus</i> was higher than other isolates which also showed maximum surface tension reduction and emulsification index. As a whole, remarkable biosurfactant production occurred using petroleum crude oil as a carbon source in medium. <i>A. citreus</i> was found to be more robust than other tested strains in removal efficiency of crude oil due to its biosurfactant production capability. Statistically significant positive correlation was observed between biofilm existence and surface tension using diesel and hexadecane as carbon source. Overall diesel biodegradation efficiency by the mix culture of three applied strains was about 75% within a short period of time (10 days) which was accompanied with high biofilm production.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"21 2","pages":"417 - 428"},"PeriodicalIF":3.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-023-00868-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Potential of some microbial isolates on diesel hydrocarbons removal, bio surfactant production and biofilm formation\",\"authors\":\"Sara Bajelani, Naeimeh Enayatizamir, Ali Beheshti Ale Agha, Rouhallah Sharifi\",\"doi\":\"10.1007/s40201-023-00868-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Potential of <i>Arthrobacter citreus</i> B27Pet, <i>Bacillus thuringiensis</i> B48Pet and <i>Candida catnulata</i> to produce biosurfactant using four different carbon sources (naphthalene, hexadecane, diesel and petroleum crude oil) was investigated. Removal of petroleum crude oil from aqueous culture and degradation of diesel were also determined using single and mixed culture of strains. The biofilm existence in single and mixed culture of strains was considered using naphthalene, hexadecane and diesel in culture medium. Cell surface hydrophobicity of <i>A. citreus</i> was higher than other isolates which also showed maximum surface tension reduction and emulsification index. As a whole, remarkable biosurfactant production occurred using petroleum crude oil as a carbon source in medium. <i>A. citreus</i> was found to be more robust than other tested strains in removal efficiency of crude oil due to its biosurfactant production capability. Statistically significant positive correlation was observed between biofilm existence and surface tension using diesel and hexadecane as carbon source. Overall diesel biodegradation efficiency by the mix culture of three applied strains was about 75% within a short period of time (10 days) which was accompanied with high biofilm production.</p></div>\",\"PeriodicalId\":628,\"journal\":{\"name\":\"Journal of Environmental Health Science and Engineering\",\"volume\":\"21 2\",\"pages\":\"417 - 428\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40201-023-00868-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Health Science and Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40201-023-00868-9\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-023-00868-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Potential of some microbial isolates on diesel hydrocarbons removal, bio surfactant production and biofilm formation
Potential of Arthrobacter citreus B27Pet, Bacillus thuringiensis B48Pet and Candida catnulata to produce biosurfactant using four different carbon sources (naphthalene, hexadecane, diesel and petroleum crude oil) was investigated. Removal of petroleum crude oil from aqueous culture and degradation of diesel were also determined using single and mixed culture of strains. The biofilm existence in single and mixed culture of strains was considered using naphthalene, hexadecane and diesel in culture medium. Cell surface hydrophobicity of A. citreus was higher than other isolates which also showed maximum surface tension reduction and emulsification index. As a whole, remarkable biosurfactant production occurred using petroleum crude oil as a carbon source in medium. A. citreus was found to be more robust than other tested strains in removal efficiency of crude oil due to its biosurfactant production capability. Statistically significant positive correlation was observed between biofilm existence and surface tension using diesel and hexadecane as carbon source. Overall diesel biodegradation efficiency by the mix culture of three applied strains was about 75% within a short period of time (10 days) which was accompanied with high biofilm production.
期刊介绍:
Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management.
A broad outline of the journal''s scope includes:
-Water pollution and treatment
-Wastewater treatment and reuse
-Air control
-Soil remediation
-Noise and radiation control
-Environmental biotechnology and nanotechnology
-Food safety and hygiene