氧化应激下妊娠X受体的功能

IF 1.1 Q4 CELL BIOLOGY
Yu. V. Abalenikhina, E. A. Sudakova, A. A. Slepnev, A. A. Seidkulieva, P. D. Erokhina, A. V. Shchulkin, E. N. Yakusheva
{"title":"氧化应激下妊娠X受体的功能","authors":"Yu. V. Abalenikhina,&nbsp;E. A. Sudakova,&nbsp;A. A. Slepnev,&nbsp;A. A. Seidkulieva,&nbsp;P. D. Erokhina,&nbsp;A. V. Shchulkin,&nbsp;E. N. Yakusheva","doi":"10.1134/S1990747822010032","DOIUrl":null,"url":null,"abstract":"<p>The pregnane X receptor (PXR) is a nuclear receptor that plays an important role in regulating the expression of biotransformation and metabolism enzymes, as well as transporter proteins. There are contradictory data in the literature on the effect of oxidative stress on the amount of PXR. The purpose of this study was to evaluate the effect of oxidative stress on the functioning of PXR. The work was performed on the Caco-2 cell line. Oxidative stress was modeled with hydrogen peroxide at concentrations of 0.1, 0.5, 1, 5, 10, 50, and 100 μM and incubation duration of 3, 24, and 72 h. The amount of PXR was estimated by Western blot method. H<sub>2</sub>O<sub>2</sub> at all concentrations during incubation for 3 h did not significantly affect the amount of PXR. An increase in the exposure up to 24 h at prooxidant concentrations of 10, 50, and 100 μM led to an increase in the amount of PXR, which was combined with an increase in the content of lipid peroxidation products (LPPs). Continued exposure to hydrogen peroxide for up to 72 h was accompanied by an increase in the concentration of LPPs and a decrease in the amount of PXR to control values (at the H<sub>2</sub>O<sub>2</sub> concentration of 10?μM) or below it (at H<sub>2</sub>O<sub>2</sub> concentrations of 50 and 100 μM). Incubation of the cells with malonic dialdehyde, the final product of lipid peroxidation, at a concentration of 10 μM for 24 h led to an increase in the amount of PXR. Thus, exposure to hydrogen peroxide for 24 h led to an increase in the amount of PXR and was associated with the inducing effect of LPPs. An increase in the exposure to 72 h leveled this inducing effect.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Functioning of the Pregnan X Receptor under Oxidative Stress\",\"authors\":\"Yu. V. Abalenikhina,&nbsp;E. A. Sudakova,&nbsp;A. A. Slepnev,&nbsp;A. A. Seidkulieva,&nbsp;P. D. Erokhina,&nbsp;A. V. Shchulkin,&nbsp;E. N. Yakusheva\",\"doi\":\"10.1134/S1990747822010032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The pregnane X receptor (PXR) is a nuclear receptor that plays an important role in regulating the expression of biotransformation and metabolism enzymes, as well as transporter proteins. There are contradictory data in the literature on the effect of oxidative stress on the amount of PXR. The purpose of this study was to evaluate the effect of oxidative stress on the functioning of PXR. The work was performed on the Caco-2 cell line. Oxidative stress was modeled with hydrogen peroxide at concentrations of 0.1, 0.5, 1, 5, 10, 50, and 100 μM and incubation duration of 3, 24, and 72 h. The amount of PXR was estimated by Western blot method. H<sub>2</sub>O<sub>2</sub> at all concentrations during incubation for 3 h did not significantly affect the amount of PXR. An increase in the exposure up to 24 h at prooxidant concentrations of 10, 50, and 100 μM led to an increase in the amount of PXR, which was combined with an increase in the content of lipid peroxidation products (LPPs). Continued exposure to hydrogen peroxide for up to 72 h was accompanied by an increase in the concentration of LPPs and a decrease in the amount of PXR to control values (at the H<sub>2</sub>O<sub>2</sub> concentration of 10?μM) or below it (at H<sub>2</sub>O<sub>2</sub> concentrations of 50 and 100 μM). Incubation of the cells with malonic dialdehyde, the final product of lipid peroxidation, at a concentration of 10 μM for 24 h led to an increase in the amount of PXR. Thus, exposure to hydrogen peroxide for 24 h led to an increase in the amount of PXR and was associated with the inducing effect of LPPs. An increase in the exposure to 72 h leveled this inducing effect.</p>\",\"PeriodicalId\":484,\"journal\":{\"name\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990747822010032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747822010032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

孕烷X受体(pregnane X receptor, PXR)是一种核受体,在调节生物转化和代谢酶以及转运蛋白的表达中起重要作用。关于氧化应激对PXR量的影响,文献中存在矛盾的数据。本研究旨在探讨氧化应激对PXR功能的影响。这项工作是在Caco-2细胞系上进行的。过氧化氢浓度分别为0.1、0.5、1、5、10、50和100 μM,孵育时间分别为3、24和72 h,采用Western blot法测定PXR的含量。在孵育3 h期间,不同浓度的H2O2对PXR的量没有显著影响。在10、50和100 μM的促氧化剂浓度下暴露24小时,PXR的含量增加,同时脂质过氧化产物(LPPs)的含量增加。持续暴露于过氧化氢长达72小时,LPPs浓度增加,PXR量减少到控制值(H2O2浓度为10 μM)或低于控制值(H2O2浓度为50和100 μM)。脂质过氧化的最终产物丙二醛(malonic didehyde)在10 μM浓度下孵育细胞24 h,导致PXR的数量增加。因此,暴露于过氧化氢24小时导致PXR的量增加,并与LPPs的诱导作用有关。暴露时间增加到72小时后,这种诱导作用趋于稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functioning of the Pregnan X Receptor under Oxidative Stress

The pregnane X receptor (PXR) is a nuclear receptor that plays an important role in regulating the expression of biotransformation and metabolism enzymes, as well as transporter proteins. There are contradictory data in the literature on the effect of oxidative stress on the amount of PXR. The purpose of this study was to evaluate the effect of oxidative stress on the functioning of PXR. The work was performed on the Caco-2 cell line. Oxidative stress was modeled with hydrogen peroxide at concentrations of 0.1, 0.5, 1, 5, 10, 50, and 100 μM and incubation duration of 3, 24, and 72 h. The amount of PXR was estimated by Western blot method. H2O2 at all concentrations during incubation for 3 h did not significantly affect the amount of PXR. An increase in the exposure up to 24 h at prooxidant concentrations of 10, 50, and 100 μM led to an increase in the amount of PXR, which was combined with an increase in the content of lipid peroxidation products (LPPs). Continued exposure to hydrogen peroxide for up to 72 h was accompanied by an increase in the concentration of LPPs and a decrease in the amount of PXR to control values (at the H2O2 concentration of 10?μM) or below it (at H2O2 concentrations of 50 and 100 μM). Incubation of the cells with malonic dialdehyde, the final product of lipid peroxidation, at a concentration of 10 μM for 24 h led to an increase in the amount of PXR. Thus, exposure to hydrogen peroxide for 24 h led to an increase in the amount of PXR and was associated with the inducing effect of LPPs. An increase in the exposure to 72 h leveled this inducing effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
28
期刊介绍: Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology   is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信