Atif Zafar, Yuliang Su, Wendong Wang, S. G. Alam, Danish Khan, M. Yasir, A. AlRassas, I. Ahmad
{"title":"油页岩原位转化过程的散热模拟","authors":"Atif Zafar, Yuliang Su, Wendong Wang, S. G. Alam, Danish Khan, M. Yasir, A. AlRassas, I. Ahmad","doi":"10.4236/ojogas.2020.52005","DOIUrl":null,"url":null,"abstract":"In-situ conversion of process of oil shale has been technically proven as a pilot field project. Gradually heating the reservoir by using subsurface electric heaters converts the oil shale reservoir kerogen into oil, gas and other producible components. This process also enhances the internal energy of the porous media as well as the subsurface fluid. Heat is transmitted in the reservoir within each fluid by different processes i.e. , due to the flow of fluid called advective process, and due to molecular diffusion where dispersive and diffusive processes take place. Heat transfer through conduction and convection mechanisms in the porous media are modeled mathematically and numerically incorporating the advective, dispersive and diffusive processes in the reservoir. The results show the production of oil and gas as a result of conversion of kerogen due to modeled heat dissipation.","PeriodicalId":65460,"journal":{"name":"长江油气:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Heat Dissipation Modeling of In-Situ Conversion Process of Oil Shale\",\"authors\":\"Atif Zafar, Yuliang Su, Wendong Wang, S. G. Alam, Danish Khan, M. Yasir, A. AlRassas, I. Ahmad\",\"doi\":\"10.4236/ojogas.2020.52005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-situ conversion of process of oil shale has been technically proven as a pilot field project. Gradually heating the reservoir by using subsurface electric heaters converts the oil shale reservoir kerogen into oil, gas and other producible components. This process also enhances the internal energy of the porous media as well as the subsurface fluid. Heat is transmitted in the reservoir within each fluid by different processes i.e. , due to the flow of fluid called advective process, and due to molecular diffusion where dispersive and diffusive processes take place. Heat transfer through conduction and convection mechanisms in the porous media are modeled mathematically and numerically incorporating the advective, dispersive and diffusive processes in the reservoir. The results show the production of oil and gas as a result of conversion of kerogen due to modeled heat dissipation.\",\"PeriodicalId\":65460,\"journal\":{\"name\":\"长江油气:英文版\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"长江油气:英文版\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/ojogas.2020.52005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"长江油气:英文版","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/ojogas.2020.52005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heat Dissipation Modeling of In-Situ Conversion Process of Oil Shale
In-situ conversion of process of oil shale has been technically proven as a pilot field project. Gradually heating the reservoir by using subsurface electric heaters converts the oil shale reservoir kerogen into oil, gas and other producible components. This process also enhances the internal energy of the porous media as well as the subsurface fluid. Heat is transmitted in the reservoir within each fluid by different processes i.e. , due to the flow of fluid called advective process, and due to molecular diffusion where dispersive and diffusive processes take place. Heat transfer through conduction and convection mechanisms in the porous media are modeled mathematically and numerically incorporating the advective, dispersive and diffusive processes in the reservoir. The results show the production of oil and gas as a result of conversion of kerogen due to modeled heat dissipation.