Mariana Rodríguez-Hakim, Luka Oblak and Jan Vermant*,
{"title":"超稳定微米级泡沫的简易和稳健生产","authors":"Mariana Rodríguez-Hakim, Luka Oblak and Jan Vermant*, ","doi":"10.1021/acsengineeringau.3c00005","DOIUrl":null,"url":null,"abstract":"<p >Stable foams that can resist disproportionation for extended periods of time have important applications in a wide range of technological and consumer materials. Yet, legislative initiatives limit the range of surface active materials that can be used for environmental impact reasons. There is a need for technologies to efficiently produce multiphase materials using more eco-friendly components, such as particles, and for which traditional thermodynamics-based processing routes are not necessarily efficient enough. This work describes an innovative foaming technology that can produce ultrastable Pickering-Ramsden foams, with bubbles of micrometer-sized dimensions, through pressure-induced particle densification. Specifically, aqueous nanosilica-stabilized foams are produced by foaming a suspension at subatmospheric pressures, allowing for adsorption of the particles onto large bubbles. This is followed by an increase back to atmospheric pressure, which induces bubble shrinkage and compresses the adsorbed particle interface, forming a strong elastoplastic network that provides mechanical resistance against disproportionation. The foam’s interfacial mechanical properties are quantified to predict the range of processing conditions needed to produce permanently stable foams, and a general stability criterion is derived by considering the interfacial rheological properties under slow, unidirectional compression. Foams that are stable against disproportionation are characterized by interfaces whose mechanical resistance to compressive deformations can withstand their tendency to minimize the interfacial stress by reducing their surface area. Our ultrastable nanosilica foams are tested in real-life applications by introducing them into concrete. In comparison to other commercial air entrainers, our microfoam improves concrete’s freeze–thaw resistance while supplying higher material strength, providing an economically attractive, industrially scalable, and durable alternative for use in real-life applications involving cementitious materials. The applicability of our stability criterion to other rheologically complex interfaces and the versatile nature of our foaming technology enables usage for a broad class of materials, beyond the construction industry.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.3c00005","citationCount":"2","resultStr":"{\"title\":\"Facile and Robust Production of Ultrastable Micrometer-Sized Foams\",\"authors\":\"Mariana Rodríguez-Hakim, Luka Oblak and Jan Vermant*, \",\"doi\":\"10.1021/acsengineeringau.3c00005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Stable foams that can resist disproportionation for extended periods of time have important applications in a wide range of technological and consumer materials. Yet, legislative initiatives limit the range of surface active materials that can be used for environmental impact reasons. There is a need for technologies to efficiently produce multiphase materials using more eco-friendly components, such as particles, and for which traditional thermodynamics-based processing routes are not necessarily efficient enough. This work describes an innovative foaming technology that can produce ultrastable Pickering-Ramsden foams, with bubbles of micrometer-sized dimensions, through pressure-induced particle densification. Specifically, aqueous nanosilica-stabilized foams are produced by foaming a suspension at subatmospheric pressures, allowing for adsorption of the particles onto large bubbles. This is followed by an increase back to atmospheric pressure, which induces bubble shrinkage and compresses the adsorbed particle interface, forming a strong elastoplastic network that provides mechanical resistance against disproportionation. The foam’s interfacial mechanical properties are quantified to predict the range of processing conditions needed to produce permanently stable foams, and a general stability criterion is derived by considering the interfacial rheological properties under slow, unidirectional compression. Foams that are stable against disproportionation are characterized by interfaces whose mechanical resistance to compressive deformations can withstand their tendency to minimize the interfacial stress by reducing their surface area. Our ultrastable nanosilica foams are tested in real-life applications by introducing them into concrete. In comparison to other commercial air entrainers, our microfoam improves concrete’s freeze–thaw resistance while supplying higher material strength, providing an economically attractive, industrially scalable, and durable alternative for use in real-life applications involving cementitious materials. The applicability of our stability criterion to other rheologically complex interfaces and the versatile nature of our foaming technology enables usage for a broad class of materials, beyond the construction industry.</p>\",\"PeriodicalId\":29804,\"journal\":{\"name\":\"ACS Engineering Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.3c00005\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Engineering Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Facile and Robust Production of Ultrastable Micrometer-Sized Foams
Stable foams that can resist disproportionation for extended periods of time have important applications in a wide range of technological and consumer materials. Yet, legislative initiatives limit the range of surface active materials that can be used for environmental impact reasons. There is a need for technologies to efficiently produce multiphase materials using more eco-friendly components, such as particles, and for which traditional thermodynamics-based processing routes are not necessarily efficient enough. This work describes an innovative foaming technology that can produce ultrastable Pickering-Ramsden foams, with bubbles of micrometer-sized dimensions, through pressure-induced particle densification. Specifically, aqueous nanosilica-stabilized foams are produced by foaming a suspension at subatmospheric pressures, allowing for adsorption of the particles onto large bubbles. This is followed by an increase back to atmospheric pressure, which induces bubble shrinkage and compresses the adsorbed particle interface, forming a strong elastoplastic network that provides mechanical resistance against disproportionation. The foam’s interfacial mechanical properties are quantified to predict the range of processing conditions needed to produce permanently stable foams, and a general stability criterion is derived by considering the interfacial rheological properties under slow, unidirectional compression. Foams that are stable against disproportionation are characterized by interfaces whose mechanical resistance to compressive deformations can withstand their tendency to minimize the interfacial stress by reducing their surface area. Our ultrastable nanosilica foams are tested in real-life applications by introducing them into concrete. In comparison to other commercial air entrainers, our microfoam improves concrete’s freeze–thaw resistance while supplying higher material strength, providing an economically attractive, industrially scalable, and durable alternative for use in real-life applications involving cementitious materials. The applicability of our stability criterion to other rheologically complex interfaces and the versatile nature of our foaming technology enables usage for a broad class of materials, beyond the construction industry.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)