{"title":"褐煤与高硫石油焦在CO2气化中的协同作用","authors":"Lirui Mao, Tao Liu, Yanlin Zhao, Mingdong Zheng","doi":"10.1515/gps-2022-8143","DOIUrl":null,"url":null,"abstract":"Abstract High-sulfur petroleum coke (PC) as solid waste has high treatment cost. Gasification technology can utilize PC and lignite for co-gasification. Organically combining the two is the key to expanding the adaptability of gasification raw materials. This work used thermal analysis technology to study the gasification reaction of PC and lignite systems in a CO2 atmosphere. The results show that the starting and end temperatures of the co-gasification of lignite/high-sulfur PC are lower than those of pure coke. The improved carbonization rate and gasification reaction index indicate that lignite improves the gasification performance. The gasification synergy factors are all greater than 1, indicating that the co-gasification process produces obvious synergism, and the synergism is more obvious in the gasification stage after 800°C. The lignite ash is gradually enriched on the surface of high-sulfur PC with the temperature increase, and the Ca and Fe elements have an obvious catalytic effect, but the catalytic effect has a saturation value. Ashes from lignite used as a multi-component gasification catalyst can increase the overall reactivity in the lignite/high-sulfur PC system, which can broaden the selection of gasification raw materials, and make efficient use of the resource characteristics of both.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synergism between lignite and high-sulfur petroleum coke in CO2 gasification\",\"authors\":\"Lirui Mao, Tao Liu, Yanlin Zhao, Mingdong Zheng\",\"doi\":\"10.1515/gps-2022-8143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract High-sulfur petroleum coke (PC) as solid waste has high treatment cost. Gasification technology can utilize PC and lignite for co-gasification. Organically combining the two is the key to expanding the adaptability of gasification raw materials. This work used thermal analysis technology to study the gasification reaction of PC and lignite systems in a CO2 atmosphere. The results show that the starting and end temperatures of the co-gasification of lignite/high-sulfur PC are lower than those of pure coke. The improved carbonization rate and gasification reaction index indicate that lignite improves the gasification performance. The gasification synergy factors are all greater than 1, indicating that the co-gasification process produces obvious synergism, and the synergism is more obvious in the gasification stage after 800°C. The lignite ash is gradually enriched on the surface of high-sulfur PC with the temperature increase, and the Ca and Fe elements have an obvious catalytic effect, but the catalytic effect has a saturation value. Ashes from lignite used as a multi-component gasification catalyst can increase the overall reactivity in the lignite/high-sulfur PC system, which can broaden the selection of gasification raw materials, and make efficient use of the resource characteristics of both.\",\"PeriodicalId\":12758,\"journal\":{\"name\":\"Green Processing and Synthesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Processing and Synthesis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/gps-2022-8143\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Processing and Synthesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/gps-2022-8143","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synergism between lignite and high-sulfur petroleum coke in CO2 gasification
Abstract High-sulfur petroleum coke (PC) as solid waste has high treatment cost. Gasification technology can utilize PC and lignite for co-gasification. Organically combining the two is the key to expanding the adaptability of gasification raw materials. This work used thermal analysis technology to study the gasification reaction of PC and lignite systems in a CO2 atmosphere. The results show that the starting and end temperatures of the co-gasification of lignite/high-sulfur PC are lower than those of pure coke. The improved carbonization rate and gasification reaction index indicate that lignite improves the gasification performance. The gasification synergy factors are all greater than 1, indicating that the co-gasification process produces obvious synergism, and the synergism is more obvious in the gasification stage after 800°C. The lignite ash is gradually enriched on the surface of high-sulfur PC with the temperature increase, and the Ca and Fe elements have an obvious catalytic effect, but the catalytic effect has a saturation value. Ashes from lignite used as a multi-component gasification catalyst can increase the overall reactivity in the lignite/high-sulfur PC system, which can broaden the selection of gasification raw materials, and make efficient use of the resource characteristics of both.
期刊介绍:
Green Processing and Synthesis is a bimonthly, peer-reviewed journal that provides up-to-date research both on fundamental as well as applied aspects of innovative green process development and chemical synthesis, giving an appropriate share to industrial views. The contributions are cutting edge, high-impact, authoritative, and provide both pros and cons of potential technologies. Green Processing and Synthesis provides a platform for scientists and engineers, especially chemists and chemical engineers, but is also open for interdisciplinary research from other areas such as physics, materials science, or catalysis.