水池火灾中液体热结构的理论分析

IF 1.9 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
T. Beji
{"title":"水池火灾中液体热结构的理论分析","authors":"T. Beji","doi":"10.1177/0734904120962376","DOIUrl":null,"url":null,"abstract":"This article presents a theoretical work on liquid heat-up in the case of a pool fire. It is assumed that the convective currents occurring within the upper layer of the liquid are induced by Rayleigh–Bénard instabilities that are caused by in-depth radiation. The upper layer depth has been estimated based on the analytical solution of a one-dimensional Fourier’s equation for the temperature with a source term for in-depth radiation. The model has been assessed against experimental data for a 9-cm-diameter methanol steady-state pool fire and three different liquid depths (18, 12 and 6 mm). The general trend, that is, increase in the upper layer depth as the bottom boundary temperature increases, is well captured. In order to ensure that the well-mixed upper layer is at a temperature near the boiling point (as suggested by the experimental data), an improvement is proposed based on a radiative heat balance integral method. In addition to the above, a novel methodology is developed for the calculation of the ‘effective’ thermal conductivity as a means to circumvent detailed calculations of heat transfer within the liquid.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0734904120962376","citationCount":"7","resultStr":"{\"title\":\"Theoretical analysis of the liquid thermal structure in a pool fire\",\"authors\":\"T. Beji\",\"doi\":\"10.1177/0734904120962376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a theoretical work on liquid heat-up in the case of a pool fire. It is assumed that the convective currents occurring within the upper layer of the liquid are induced by Rayleigh–Bénard instabilities that are caused by in-depth radiation. The upper layer depth has been estimated based on the analytical solution of a one-dimensional Fourier’s equation for the temperature with a source term for in-depth radiation. The model has been assessed against experimental data for a 9-cm-diameter methanol steady-state pool fire and three different liquid depths (18, 12 and 6 mm). The general trend, that is, increase in the upper layer depth as the bottom boundary temperature increases, is well captured. In order to ensure that the well-mixed upper layer is at a temperature near the boiling point (as suggested by the experimental data), an improvement is proposed based on a radiative heat balance integral method. In addition to the above, a novel methodology is developed for the calculation of the ‘effective’ thermal conductivity as a means to circumvent detailed calculations of heat transfer within the liquid.\",\"PeriodicalId\":15772,\"journal\":{\"name\":\"Journal of Fire Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0734904120962376\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fire Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0734904120962376\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0734904120962376","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了池火情况下液体加热的理论工作。假定在液体上层内发生的对流流是由深层辐射引起的瑞利-巴萨姆德不稳定性引起的。基于一维傅里叶温度方程的解析解估计了上层深度,其中有深度辐射的源项。该模型已根据9厘米直径的甲醇稳态池火和三种不同的液体深度(18,12和6mm)的实验数据进行了评估。总的趋势,即随着底边界温度的升高,上层深度增加,被很好地捕捉到了。为了保证混合良好的上层在沸点附近的温度(如实验数据所示),提出了基于辐射热平衡积分法的改进方法。除此之外,还开发了一种计算“有效”导热系数的新方法,以绕过液体内传热的详细计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical analysis of the liquid thermal structure in a pool fire
This article presents a theoretical work on liquid heat-up in the case of a pool fire. It is assumed that the convective currents occurring within the upper layer of the liquid are induced by Rayleigh–Bénard instabilities that are caused by in-depth radiation. The upper layer depth has been estimated based on the analytical solution of a one-dimensional Fourier’s equation for the temperature with a source term for in-depth radiation. The model has been assessed against experimental data for a 9-cm-diameter methanol steady-state pool fire and three different liquid depths (18, 12 and 6 mm). The general trend, that is, increase in the upper layer depth as the bottom boundary temperature increases, is well captured. In order to ensure that the well-mixed upper layer is at a temperature near the boiling point (as suggested by the experimental data), an improvement is proposed based on a radiative heat balance integral method. In addition to the above, a novel methodology is developed for the calculation of the ‘effective’ thermal conductivity as a means to circumvent detailed calculations of heat transfer within the liquid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fire Sciences
Journal of Fire Sciences 工程技术-材料科学:综合
CiteScore
4.00
自引率
0.00%
发文量
14
审稿时长
2.5 months
期刊介绍: The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信