Ryan Smith, S. Taylor, J. Stewart, S. Guinjoan, M. Ironside, N. Kirlic, H. Ekhtiari, Evan J. White, Haixia Zheng, R. Kuplicki, M. Paulus
{"title":"1年内药物使用障碍负面结果的学习率降低及其潜在的预测效用","authors":"Ryan Smith, S. Taylor, J. Stewart, S. Guinjoan, M. Ironside, N. Kirlic, H. Ekhtiari, Evan J. White, Haixia Zheng, R. Kuplicki, M. Paulus","doi":"10.1101/2021.10.18.21265152","DOIUrl":null,"url":null,"abstract":"Computational modelling is a promising approach to parse dysfunctional cognitive processes in substance use disorders (SUDs), but it is unclear how much these processes change during the recovery period. We assessed 1-year follow-up data on a sample of treatment-seeking individuals with one or more SUDs (alcohol, cannabis, sedatives, stimulants, hallucinogens, and/or opioids; N = 83) that were previously assessed at baseline within a prior computational modelling study. Relative to healthy controls (HCs; N = 48), these participants were found at baseline to show altered learning rates and less precise action selection while completing an explore-exploit decision-making task. Here we replicate these analyses when these individuals returned and re-performed the task 1 year later to assess the stability of these baseline differences. We also examine whether baseline modelling measures can predict symptoms at follow-up. Bayesian analyses indicate that: (a) group differences in learning rates were stable over time (posterior probability = 1); (b) intra-class correlations (ICCs) between model parameters at baseline and follow-up were significant and ranged from small to moderate (.25 < ICCs < .54); and (c) learning rates and/or information-seeking values at baseline were associated with substance use severity at 1-year follow-up in stimulant and opioid users (.36 < rs < .43, .002 < ps < .02). These findings suggest that learning dysfunctions are moderately stable during recovery and could correspond to trait-like vulnerability factors. In addition, computational measures at baseline had some predictive value for changes in substance use severity over time and could be clinically informative.","PeriodicalId":72664,"journal":{"name":"Computational psychiatry (Cambridge, Mass.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Slower Learning Rates from Negative Outcomes in Substance Use Disorder over a 1-Year Period and their Potential Predictive Utility\",\"authors\":\"Ryan Smith, S. Taylor, J. Stewart, S. Guinjoan, M. Ironside, N. Kirlic, H. Ekhtiari, Evan J. White, Haixia Zheng, R. Kuplicki, M. Paulus\",\"doi\":\"10.1101/2021.10.18.21265152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational modelling is a promising approach to parse dysfunctional cognitive processes in substance use disorders (SUDs), but it is unclear how much these processes change during the recovery period. We assessed 1-year follow-up data on a sample of treatment-seeking individuals with one or more SUDs (alcohol, cannabis, sedatives, stimulants, hallucinogens, and/or opioids; N = 83) that were previously assessed at baseline within a prior computational modelling study. Relative to healthy controls (HCs; N = 48), these participants were found at baseline to show altered learning rates and less precise action selection while completing an explore-exploit decision-making task. Here we replicate these analyses when these individuals returned and re-performed the task 1 year later to assess the stability of these baseline differences. We also examine whether baseline modelling measures can predict symptoms at follow-up. Bayesian analyses indicate that: (a) group differences in learning rates were stable over time (posterior probability = 1); (b) intra-class correlations (ICCs) between model parameters at baseline and follow-up were significant and ranged from small to moderate (.25 < ICCs < .54); and (c) learning rates and/or information-seeking values at baseline were associated with substance use severity at 1-year follow-up in stimulant and opioid users (.36 < rs < .43, .002 < ps < .02). These findings suggest that learning dysfunctions are moderately stable during recovery and could correspond to trait-like vulnerability factors. In addition, computational measures at baseline had some predictive value for changes in substance use severity over time and could be clinically informative.\",\"PeriodicalId\":72664,\"journal\":{\"name\":\"Computational psychiatry (Cambridge, Mass.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational psychiatry (Cambridge, Mass.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2021.10.18.21265152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational psychiatry (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.10.18.21265152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Slower Learning Rates from Negative Outcomes in Substance Use Disorder over a 1-Year Period and their Potential Predictive Utility
Computational modelling is a promising approach to parse dysfunctional cognitive processes in substance use disorders (SUDs), but it is unclear how much these processes change during the recovery period. We assessed 1-year follow-up data on a sample of treatment-seeking individuals with one or more SUDs (alcohol, cannabis, sedatives, stimulants, hallucinogens, and/or opioids; N = 83) that were previously assessed at baseline within a prior computational modelling study. Relative to healthy controls (HCs; N = 48), these participants were found at baseline to show altered learning rates and less precise action selection while completing an explore-exploit decision-making task. Here we replicate these analyses when these individuals returned and re-performed the task 1 year later to assess the stability of these baseline differences. We also examine whether baseline modelling measures can predict symptoms at follow-up. Bayesian analyses indicate that: (a) group differences in learning rates were stable over time (posterior probability = 1); (b) intra-class correlations (ICCs) between model parameters at baseline and follow-up were significant and ranged from small to moderate (.25 < ICCs < .54); and (c) learning rates and/or information-seeking values at baseline were associated with substance use severity at 1-year follow-up in stimulant and opioid users (.36 < rs < .43, .002 < ps < .02). These findings suggest that learning dysfunctions are moderately stable during recovery and could correspond to trait-like vulnerability factors. In addition, computational measures at baseline had some predictive value for changes in substance use severity over time and could be clinically informative.