轻碳氢化合物在含镍玻璃纤维催化剂上的分解

Q4 Materials Science
M. Popov, M. Chudakova, P. B. Kurmashov, A. Bannov, A. V. Kleimenov, Prof. N. Uvarov, Prof. E. Aubakirov
{"title":"轻碳氢化合物在含镍玻璃纤维催化剂上的分解","authors":"M. Popov, M. Chudakova, P. B. Kurmashov, A. Bannov, A. V. Kleimenov, Prof. N. Uvarov, Prof. E. Aubakirov","doi":"10.15826/chimtech.2023.10.3.06","DOIUrl":null,"url":null,"abstract":"The work is devoted to the study of the novel process of catalytic decomposition of light hydrocarbons on a catalyst at temperatures of 550 °С and 600 °C at various pressures. The CVD process is a new COx-free approach for hydrogen production. A glass fiber fabric was used as a catalyst, which was preliminarily modified by the application of additional outer layers of NiO and porous silica. A technical mixture of propane and butane was used as feedstock. The main purpose is to investigate the effects of pressure and temperature on the production of hydrogen and carbon nanofibers over a glass-based catalyst. As a result of the decomposition of the mixture, the yield of hydrogen was 266–848 L/gcat, and that of carbon nanofibers was 3–10 g/gcat. Increasing the pressure of propane-butane mixture decomposition led to an increase of the catalyst lifetime. The highest yield of hydrogen and carbon nanofibers was achieved at 1 bar and 600 °C.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposition of light hydrocarbons on a Ni-containing glass fiber catalyst\",\"authors\":\"M. Popov, M. Chudakova, P. B. Kurmashov, A. Bannov, A. V. Kleimenov, Prof. N. Uvarov, Prof. E. Aubakirov\",\"doi\":\"10.15826/chimtech.2023.10.3.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work is devoted to the study of the novel process of catalytic decomposition of light hydrocarbons on a catalyst at temperatures of 550 °С and 600 °C at various pressures. The CVD process is a new COx-free approach for hydrogen production. A glass fiber fabric was used as a catalyst, which was preliminarily modified by the application of additional outer layers of NiO and porous silica. A technical mixture of propane and butane was used as feedstock. The main purpose is to investigate the effects of pressure and temperature on the production of hydrogen and carbon nanofibers over a glass-based catalyst. As a result of the decomposition of the mixture, the yield of hydrogen was 266–848 L/gcat, and that of carbon nanofibers was 3–10 g/gcat. Increasing the pressure of propane-butane mixture decomposition led to an increase of the catalyst lifetime. The highest yield of hydrogen and carbon nanofibers was achieved at 1 bar and 600 °C.\",\"PeriodicalId\":9964,\"journal\":{\"name\":\"Chimica Techno Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimica Techno Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/chimtech.2023.10.3.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimica Techno Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/chimtech.2023.10.3.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

这项工作致力于研究在550°С和600°C的温度下,在不同压力下,在催化剂上催化分解轻质烃的新工艺。CVD工艺是一种新的无二氧化碳制氢方法。使用玻璃纤维织物作为催化剂,通过应用额外的NiO和多孔二氧化硅外层对其进行初步改性。丙烷和丁烷的技术混合物被用作原料。主要目的是研究压力和温度对在玻璃基催化剂上生产氢和碳纳米纤维的影响。由于混合物的分解,氢气的产量为266–848 L/gcat,碳纳米纤维的产量为3–10 g/gcat。提高丙烷-丁烷混合物分解的压力可以延长催化剂的使用寿命。氢和碳纳米纤维的最高产量在1巴和600°C下实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposition of light hydrocarbons on a Ni-containing glass fiber catalyst
The work is devoted to the study of the novel process of catalytic decomposition of light hydrocarbons on a catalyst at temperatures of 550 °С and 600 °C at various pressures. The CVD process is a new COx-free approach for hydrogen production. A glass fiber fabric was used as a catalyst, which was preliminarily modified by the application of additional outer layers of NiO and porous silica. A technical mixture of propane and butane was used as feedstock. The main purpose is to investigate the effects of pressure and temperature on the production of hydrogen and carbon nanofibers over a glass-based catalyst. As a result of the decomposition of the mixture, the yield of hydrogen was 266–848 L/gcat, and that of carbon nanofibers was 3–10 g/gcat. Increasing the pressure of propane-butane mixture decomposition led to an increase of the catalyst lifetime. The highest yield of hydrogen and carbon nanofibers was achieved at 1 bar and 600 °C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chimica Techno Acta
Chimica Techno Acta Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
67
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信