FL控制器对并网太阳能光伏系统局部遮阳的影响

Q2 Energy
K. L. Shenoy, C. G. Nayak, R. P. Mandi
{"title":"FL控制器对并网太阳能光伏系统局部遮阳的影响","authors":"K. L. Shenoy, C. G. Nayak, R. P. Mandi","doi":"10.11591/IJPEDS.V12.I1.PP431-440","DOIUrl":null,"url":null,"abstract":"As conventional fossil fuel reserves shrink and the danger of climate change prevailing, the need for alternative energy sources is unparalleled. A smart approach to compensate the dependence on electricity generated by burning fossil fuels is through the power generation using grid connected PV system. Partial shading on PV array affects the quantity of the output power in photovoltaic (PV) systems. To extract maximum power from PV under variable irradiance, variable temperature and partial shading condition, various MPPT algorithms are used. Incremental conductance and fuzzy based MPPT techniques are used for maximum power extraction from PV array. Basically 11 kW Solar PV system comprising of PV array coupled with an Inverter through a dc-dc converter is considered for the analysis and output of the inverter is supplied to the load through the LCL filter. An Intelligent controller for maximum power point tracking of PV power is designed. Also, a fuzzy controller for VSC is developed to improve the system performance. The above proposed design has been simulated in the MATLAB/Simulink and analyzed the system performance under various operating conditions. Finally, the performance is evaluated with IEEE 1547 standard for showing the effectiveness of the system.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"431-440"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Effect of partial shading in grid connected solar PV system with FL controller\",\"authors\":\"K. L. Shenoy, C. G. Nayak, R. P. Mandi\",\"doi\":\"10.11591/IJPEDS.V12.I1.PP431-440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As conventional fossil fuel reserves shrink and the danger of climate change prevailing, the need for alternative energy sources is unparalleled. A smart approach to compensate the dependence on electricity generated by burning fossil fuels is through the power generation using grid connected PV system. Partial shading on PV array affects the quantity of the output power in photovoltaic (PV) systems. To extract maximum power from PV under variable irradiance, variable temperature and partial shading condition, various MPPT algorithms are used. Incremental conductance and fuzzy based MPPT techniques are used for maximum power extraction from PV array. Basically 11 kW Solar PV system comprising of PV array coupled with an Inverter through a dc-dc converter is considered for the analysis and output of the inverter is supplied to the load through the LCL filter. An Intelligent controller for maximum power point tracking of PV power is designed. Also, a fuzzy controller for VSC is developed to improve the system performance. The above proposed design has been simulated in the MATLAB/Simulink and analyzed the system performance under various operating conditions. Finally, the performance is evaluated with IEEE 1547 standard for showing the effectiveness of the system.\",\"PeriodicalId\":38280,\"journal\":{\"name\":\"International Journal of Power Electronics and Drive Systems\",\"volume\":\"12 1\",\"pages\":\"431-440\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power Electronics and Drive Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJPEDS.V12.I1.PP431-440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V12.I1.PP431-440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 10

摘要

随着传统化石燃料储量的减少和气候变化的危险普遍存在,对替代能源的需求是无与伦比的。补偿对燃烧化石燃料发电依赖的一种明智方法是使用并网光伏系统发电。光伏阵列上的部分遮光影响光伏系统的输出功率。为了在可变辐照度、可变温度和部分遮光条件下从光伏中提取最大功率,使用了各种MPPT算法。增量电导和基于模糊的MPPT技术被用于从光伏阵列中提取最大功率。基本上,11千瓦太阳能光伏系统包括通过直流-直流转换器与逆变器耦合的光伏阵列,用于分析,逆变器的输出通过LCL滤波器提供给负载。设计了一种用于光伏功率最大功率点跟踪的智能控制器。此外,为了提高系统性能,还开发了一种用于VSC的模糊控制器。上述设计已在MATLAB/Simulink中进行了仿真,并分析了系统在各种运行条件下的性能。最后,利用IEEE1547标准对系统的性能进行了评估,以表明系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of partial shading in grid connected solar PV system with FL controller
As conventional fossil fuel reserves shrink and the danger of climate change prevailing, the need for alternative energy sources is unparalleled. A smart approach to compensate the dependence on electricity generated by burning fossil fuels is through the power generation using grid connected PV system. Partial shading on PV array affects the quantity of the output power in photovoltaic (PV) systems. To extract maximum power from PV under variable irradiance, variable temperature and partial shading condition, various MPPT algorithms are used. Incremental conductance and fuzzy based MPPT techniques are used for maximum power extraction from PV array. Basically 11 kW Solar PV system comprising of PV array coupled with an Inverter through a dc-dc converter is considered for the analysis and output of the inverter is supplied to the load through the LCL filter. An Intelligent controller for maximum power point tracking of PV power is designed. Also, a fuzzy controller for VSC is developed to improve the system performance. The above proposed design has been simulated in the MATLAB/Simulink and analyzed the system performance under various operating conditions. Finally, the performance is evaluated with IEEE 1547 standard for showing the effectiveness of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Power Electronics and Drive Systems
International Journal of Power Electronics and Drive Systems Energy-Energy Engineering and Power Technology
CiteScore
3.50
自引率
0.00%
发文量
0
期刊介绍: International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信