{"title":"揭示矢量结构光在复杂介质中的不变性","authors":"Isaac Nape, Keshaan Singh, Asher Klug, Wagner Buono, Carmelo Rosales-Guzman, Amy McWilliam, Sonja Franke-Arnold, Ané Kritzinger, Patricia Forbes, Angela Dudley, Andrew Forbes","doi":"10.1038/s41566-022-01023-w","DOIUrl":null,"url":null,"abstract":"Optical aberrations place fundamental limits on the achievable resolution with focusing and imaging. In the context of structured light, optical imperfections and misalignments and perturbing media such as turbulent air, underwater and optical fibre distort the amplitude and phase of the light’s spatial pattern. Here we show that polarization inhomogeneity that defines vectorial structured light is immune to all such perturbations, provided they are unitary. As an example, we study the robustness of vector vortex beams propagating through highly aberrated systems, demonstrating that the inhomogeneous nature of polarization remains unaltered even as the medium itself changes. The unitary nature of the channel allows us to undo this change through a simple lossless operation. This approach paves the way to the versatile application of vectorial structured light, even through non-ideal optical systems, crucial in applications such as imaging and optical communication across noisy channels. Structured light is shown to be robust against unitary perturbations.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"16 7","pages":"538-546"},"PeriodicalIF":32.9000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Revealing the invariance of vectorial structured light in complex media\",\"authors\":\"Isaac Nape, Keshaan Singh, Asher Klug, Wagner Buono, Carmelo Rosales-Guzman, Amy McWilliam, Sonja Franke-Arnold, Ané Kritzinger, Patricia Forbes, Angela Dudley, Andrew Forbes\",\"doi\":\"10.1038/s41566-022-01023-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical aberrations place fundamental limits on the achievable resolution with focusing and imaging. In the context of structured light, optical imperfections and misalignments and perturbing media such as turbulent air, underwater and optical fibre distort the amplitude and phase of the light’s spatial pattern. Here we show that polarization inhomogeneity that defines vectorial structured light is immune to all such perturbations, provided they are unitary. As an example, we study the robustness of vector vortex beams propagating through highly aberrated systems, demonstrating that the inhomogeneous nature of polarization remains unaltered even as the medium itself changes. The unitary nature of the channel allows us to undo this change through a simple lossless operation. This approach paves the way to the versatile application of vectorial structured light, even through non-ideal optical systems, crucial in applications such as imaging and optical communication across noisy channels. Structured light is shown to be robust against unitary perturbations.\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"16 7\",\"pages\":\"538-546\"},\"PeriodicalIF\":32.9000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41566-022-01023-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-022-01023-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Revealing the invariance of vectorial structured light in complex media
Optical aberrations place fundamental limits on the achievable resolution with focusing and imaging. In the context of structured light, optical imperfections and misalignments and perturbing media such as turbulent air, underwater and optical fibre distort the amplitude and phase of the light’s spatial pattern. Here we show that polarization inhomogeneity that defines vectorial structured light is immune to all such perturbations, provided they are unitary. As an example, we study the robustness of vector vortex beams propagating through highly aberrated systems, demonstrating that the inhomogeneous nature of polarization remains unaltered even as the medium itself changes. The unitary nature of the channel allows us to undo this change through a simple lossless operation. This approach paves the way to the versatile application of vectorial structured light, even through non-ideal optical systems, crucial in applications such as imaging and optical communication across noisy channels. Structured light is shown to be robust against unitary perturbations.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.