{"title":"PowNet:一个用于大型电力系统分析的网络约束机组组合/经济调度模型","authors":"A. Chowdhury, J. Kern, Thanh Duc Dang, S. Galelli","doi":"10.5334/jors.302","DOIUrl":null,"url":null,"abstract":"PowNet is a free modelling tool for simulating the Unit Commitment/Economic Dispatch of large-scale power systems. PowNet is specifically conceived for systems characterized by the presence of variable renewable resources (e.g., hydropower, solar, and wind), whose penetration on the grid is strongly influenced by climatic variability and constrained by the availability of transmission capacity. To help users effectively capture the nuances of power system dynamics, PowNet is equipped with features that enable accuracy, transferability, and computational efficiency over large spatial and temporal domains. Specifically, the model (i) accounts for the techno-economic constraints of both generating units and transmission networks, (ii) can be easily coupled with models that estimate the status of generating units as a function of the climatic conditions, and (iii) explicitly includes import/export nodes, which are useful in representing cross-border systems. PowNet is implemented in Python and is compatible with any standard optimization solver (e.g., Gurobi, CPLEX). Its functionality is demonstrated on the Cambodian power system.","PeriodicalId":37323,"journal":{"name":"Journal of Open Research Software","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"PowNet: A Network-Constrained Unit Commitment/Economic Dispatch Model for Large-Scale Power Systems Analysis\",\"authors\":\"A. Chowdhury, J. Kern, Thanh Duc Dang, S. Galelli\",\"doi\":\"10.5334/jors.302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PowNet is a free modelling tool for simulating the Unit Commitment/Economic Dispatch of large-scale power systems. PowNet is specifically conceived for systems characterized by the presence of variable renewable resources (e.g., hydropower, solar, and wind), whose penetration on the grid is strongly influenced by climatic variability and constrained by the availability of transmission capacity. To help users effectively capture the nuances of power system dynamics, PowNet is equipped with features that enable accuracy, transferability, and computational efficiency over large spatial and temporal domains. Specifically, the model (i) accounts for the techno-economic constraints of both generating units and transmission networks, (ii) can be easily coupled with models that estimate the status of generating units as a function of the climatic conditions, and (iii) explicitly includes import/export nodes, which are useful in representing cross-border systems. PowNet is implemented in Python and is compatible with any standard optimization solver (e.g., Gurobi, CPLEX). Its functionality is demonstrated on the Cambodian power system.\",\"PeriodicalId\":37323,\"journal\":{\"name\":\"Journal of Open Research Software\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Open Research Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/jors.302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Research Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/jors.302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
PowNet: A Network-Constrained Unit Commitment/Economic Dispatch Model for Large-Scale Power Systems Analysis
PowNet is a free modelling tool for simulating the Unit Commitment/Economic Dispatch of large-scale power systems. PowNet is specifically conceived for systems characterized by the presence of variable renewable resources (e.g., hydropower, solar, and wind), whose penetration on the grid is strongly influenced by climatic variability and constrained by the availability of transmission capacity. To help users effectively capture the nuances of power system dynamics, PowNet is equipped with features that enable accuracy, transferability, and computational efficiency over large spatial and temporal domains. Specifically, the model (i) accounts for the techno-economic constraints of both generating units and transmission networks, (ii) can be easily coupled with models that estimate the status of generating units as a function of the climatic conditions, and (iii) explicitly includes import/export nodes, which are useful in representing cross-border systems. PowNet is implemented in Python and is compatible with any standard optimization solver (e.g., Gurobi, CPLEX). Its functionality is demonstrated on the Cambodian power system.