使用中国地震台网数据集对几种基于神经网络的相位拾取器的精度和效率进行基准测试

IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences
Ziye Yu , Weitao Wang , Yini Chen
{"title":"使用中国地震台网数据集对几种基于神经网络的相位拾取器的精度和效率进行基准测试","authors":"Ziye Yu ,&nbsp;Weitao Wang ,&nbsp;Yini Chen","doi":"10.1016/j.eqs.2022.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Seismic phase pickers based on deep neural networks have been extensively used recently, demonstrating their advantages on both performance and efficiency. However, these pickers are trained with and applied to different data. A comprehensive benchmark based on a single dataset is therefore lacking. Here, using the recently released DiTing dataset, we analyzed performances of seven phase pickers with different network structures, the efficiencies are also evaluated using both CPU and GPU devices. Evaluations based on <em>F</em><sub>1</sub>-scores reveal that the recurrent neural network (RNN) and EQTransformer exhibit the best performance, likely owing to their large receptive fields. Similar performances are observed among PhaseNet (UNet), UNet++, and the lightweight phase picking network (LPPN). However, the LPPN models are the most efficient. The RNN and EQTransformer have similar speeds, which are slower than those of the LPPN and PhaseNet. UNet++ requires the most computational effort among the pickers. As all of the pickers perform well after being trained with a large-scale dataset, users may choose the one suitable for their applications. For beginners, we provide a tutorial on training and validating the pickers using the DiTing dataset. We also provide two sets of models trained using datasets with both 50 Hz and 100 Hz sampling rates for direct application by end-users. All of our models are open-source and publicly accessible.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"36 2","pages":"Pages 113-131"},"PeriodicalIF":1.2000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Benchmark on the accuracy and efficiency of several neural network based phase pickers using datasets from China Seismic Network\",\"authors\":\"Ziye Yu ,&nbsp;Weitao Wang ,&nbsp;Yini Chen\",\"doi\":\"10.1016/j.eqs.2022.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seismic phase pickers based on deep neural networks have been extensively used recently, demonstrating their advantages on both performance and efficiency. However, these pickers are trained with and applied to different data. A comprehensive benchmark based on a single dataset is therefore lacking. Here, using the recently released DiTing dataset, we analyzed performances of seven phase pickers with different network structures, the efficiencies are also evaluated using both CPU and GPU devices. Evaluations based on <em>F</em><sub>1</sub>-scores reveal that the recurrent neural network (RNN) and EQTransformer exhibit the best performance, likely owing to their large receptive fields. Similar performances are observed among PhaseNet (UNet), UNet++, and the lightweight phase picking network (LPPN). However, the LPPN models are the most efficient. The RNN and EQTransformer have similar speeds, which are slower than those of the LPPN and PhaseNet. UNet++ requires the most computational effort among the pickers. As all of the pickers perform well after being trained with a large-scale dataset, users may choose the one suitable for their applications. For beginners, we provide a tutorial on training and validating the pickers using the DiTing dataset. We also provide two sets of models trained using datasets with both 50 Hz and 100 Hz sampling rates for direct application by end-users. All of our models are open-source and publicly accessible.</p></div>\",\"PeriodicalId\":46333,\"journal\":{\"name\":\"Earthquake Science\",\"volume\":\"36 2\",\"pages\":\"Pages 113-131\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674451922003573\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451922003573","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 3

摘要

基于深度神经网络的地震选相器近年来得到了广泛的应用,显示出其在性能和效率方面的优势。然而,这些拾取器是用不同的数据训练并应用于不同的数据的。因此,缺乏基于单个数据集的综合基准。在这里,使用最近发布的DiTing数据集,我们分析了具有不同网络结构的七种相位拾取器的性能,并使用CPU和GPU设备评估了效率。基于f1分数的评估显示,递归神经网络(RNN)和EQTransformer表现出最好的性能,可能是由于它们的接收野较大。在PhaseNet (UNet)、UNet++和轻量级相位拾取网络(LPPN)之间观察到类似的性能。然而,LPPN模型是最有效的。RNN和EQTransformer具有相似的速度,但比LPPN和PhaseNet慢。在这些拾取器中,un++需要的计算量最大。由于所有的拾取器在经过大规模数据集的训练后都表现良好,用户可以选择适合他们应用程序的拾取器。对于初学者,我们提供了一个关于使用DiTing数据集训练和验证选择器的教程。我们还提供了两组使用50 Hz和100 Hz采样率的数据集训练的模型,供最终用户直接应用。我们所有的模型都是开源的,可以公开访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmark on the accuracy and efficiency of several neural network based phase pickers using datasets from China Seismic Network

Seismic phase pickers based on deep neural networks have been extensively used recently, demonstrating their advantages on both performance and efficiency. However, these pickers are trained with and applied to different data. A comprehensive benchmark based on a single dataset is therefore lacking. Here, using the recently released DiTing dataset, we analyzed performances of seven phase pickers with different network structures, the efficiencies are also evaluated using both CPU and GPU devices. Evaluations based on F1-scores reveal that the recurrent neural network (RNN) and EQTransformer exhibit the best performance, likely owing to their large receptive fields. Similar performances are observed among PhaseNet (UNet), UNet++, and the lightweight phase picking network (LPPN). However, the LPPN models are the most efficient. The RNN and EQTransformer have similar speeds, which are slower than those of the LPPN and PhaseNet. UNet++ requires the most computational effort among the pickers. As all of the pickers perform well after being trained with a large-scale dataset, users may choose the one suitable for their applications. For beginners, we provide a tutorial on training and validating the pickers using the DiTing dataset. We also provide two sets of models trained using datasets with both 50 Hz and 100 Hz sampling rates for direct application by end-users. All of our models are open-source and publicly accessible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquake Science
Earthquake Science GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.10
自引率
8.30%
发文量
42
审稿时长
3 months
期刊介绍: Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration. The topics include, but not limited to, the following ● Seismic sources of all kinds. ● Earth structure at all scales. ● Seismotectonics. ● New methods and theoretical seismology. ● Strong ground motion. ● Seismic phenomena of all kinds. ● Seismic hazards, earthquake forecasting and prediction. ● Seismic instrumentation. ● Significant recent or past seismic events. ● Documentation of recent seismic events or important observations. ● Descriptions of field deployments, new methods, and available software tools. The types of manuscripts include the following. There is no length requirement, except for the Short Notes. 【Articles】 Original contributions that have not been published elsewhere. 【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages. 【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications. 【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals. 【Toolboxes】 Descriptions of novel numerical methods and associated computer codes. 【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models). 【Opinions】Views on important topics and future directions in earthquake science. 【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信