{"title":"两种Gonyleptes Kirby, 1819气味腺分泌物的化学和进化分析(蛛形纲:Opiliones: Laniatores)","authors":"Matheus Lima Silva Vieira, Marcos Ryotaro Hara, Amanda Cruz Mendes, Rodrigo Hirata Willemart, Aline Bertinatto Cruz, Deborah Yara Alves Cursino dos Santos, Miriam Sannomiya","doi":"10.1007/s00049-023-00380-4","DOIUrl":null,"url":null,"abstract":"<div><p>The subfamily Gonyleptinae is the second largest in Gonyleptidae, harboring over 100 species. Gonyleptinae is polyphyletic, nestled in the clade K92, and despite its richness, several species of that subfamily have not had their chemicals of the defensive secretions analyzed. Among these are <i>Gonyleptes curticornis</i> (Mello-Leitão, 1940) and <i>G. horridus</i> Kirby, 1819, the latter being particularly important, because it is the type species of the genus, which in turn names the subfamily Gonyleptinae. <i>Gonyleptes horridus</i> is also used in many phylogenetic analyses, be it using morphological or molecular data. The chemical study of the secretions of these two species by GC–MS and <sup>1</sup>H NMR showed the presence of 1-(6-isopropyl-3,4-dihydro-2H-pyran-2-yl)-methylbutanone, 1-(6-isopropyl-3,4-dihydro-2H-pyran-2-yl) isobutanone and 4-methyl-1-hepten-3-one in both species. On the other hand, 4-methyl-1-hexen-3-one was observed only in <i>G. curticornis</i>, and 7-methyl-2-octanol is exclusive of <i>G. horridus</i>. All vinyl-ketones identified have already been described for Gonyleptidae. We ran an Ancestral Character State Reconstruction (ASR) analysis under three different conditions to infer the evolution of the identified compounds (based on modified characters of a previous study) and their chemical nature (multistate character, either as alkylphenol, benzoquinone or vinyl-ketone) on a modified Gonyleptidae phylogeny. Our results corroborate previous studies that alkylphenol is the ancestral most condition, changing to benzoquinone in the ancestor of Gonyleptidae or even earlier in a grassatorean ancestor depending on the analysis. Vinyl-ketones are a synapomorphy of K92. We briefly discuss character codifications and use of weights of ASR analyses of specific compounds, which were inconclusive. 1-(6-isopropyl-3,4-dihydro-2H-pyran-2-yl) isobutanone is shared by both <i>Gonyleptes</i> species and described for the genus <i>Sodreana</i> Mello-Leitão, 1922. 1-(6-(1-methyl-propyl)3,4-dihydro-2H-pyran-2yl)2-methylbutanone and 4-methyl-1-hepten-3-one are also shared by both <i>Gonyleptes</i> species and described for <i>Moreiranula saprophila</i>. From a taxonomic standpoint, combinations of specific compounds might help to diagnose supraspecific groups but given our limited sample, such decision should be taken with care and further tested. Finally, 7-methyl-2-octanol is described for the first time in Gonyleptidae, emphasizing the chemical diverse nature in the K92 clade.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"33 1-2","pages":"1 - 15"},"PeriodicalIF":1.6000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical and evolutionary analysis of the scent gland secretions of two species of Gonyleptes Kirby, 1819 (Arachnida: Opiliones: Laniatores)\",\"authors\":\"Matheus Lima Silva Vieira, Marcos Ryotaro Hara, Amanda Cruz Mendes, Rodrigo Hirata Willemart, Aline Bertinatto Cruz, Deborah Yara Alves Cursino dos Santos, Miriam Sannomiya\",\"doi\":\"10.1007/s00049-023-00380-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The subfamily Gonyleptinae is the second largest in Gonyleptidae, harboring over 100 species. Gonyleptinae is polyphyletic, nestled in the clade K92, and despite its richness, several species of that subfamily have not had their chemicals of the defensive secretions analyzed. Among these are <i>Gonyleptes curticornis</i> (Mello-Leitão, 1940) and <i>G. horridus</i> Kirby, 1819, the latter being particularly important, because it is the type species of the genus, which in turn names the subfamily Gonyleptinae. <i>Gonyleptes horridus</i> is also used in many phylogenetic analyses, be it using morphological or molecular data. The chemical study of the secretions of these two species by GC–MS and <sup>1</sup>H NMR showed the presence of 1-(6-isopropyl-3,4-dihydro-2H-pyran-2-yl)-methylbutanone, 1-(6-isopropyl-3,4-dihydro-2H-pyran-2-yl) isobutanone and 4-methyl-1-hepten-3-one in both species. On the other hand, 4-methyl-1-hexen-3-one was observed only in <i>G. curticornis</i>, and 7-methyl-2-octanol is exclusive of <i>G. horridus</i>. All vinyl-ketones identified have already been described for Gonyleptidae. We ran an Ancestral Character State Reconstruction (ASR) analysis under three different conditions to infer the evolution of the identified compounds (based on modified characters of a previous study) and their chemical nature (multistate character, either as alkylphenol, benzoquinone or vinyl-ketone) on a modified Gonyleptidae phylogeny. Our results corroborate previous studies that alkylphenol is the ancestral most condition, changing to benzoquinone in the ancestor of Gonyleptidae or even earlier in a grassatorean ancestor depending on the analysis. Vinyl-ketones are a synapomorphy of K92. We briefly discuss character codifications and use of weights of ASR analyses of specific compounds, which were inconclusive. 1-(6-isopropyl-3,4-dihydro-2H-pyran-2-yl) isobutanone is shared by both <i>Gonyleptes</i> species and described for the genus <i>Sodreana</i> Mello-Leitão, 1922. 1-(6-(1-methyl-propyl)3,4-dihydro-2H-pyran-2yl)2-methylbutanone and 4-methyl-1-hepten-3-one are also shared by both <i>Gonyleptes</i> species and described for <i>Moreiranula saprophila</i>. From a taxonomic standpoint, combinations of specific compounds might help to diagnose supraspecific groups but given our limited sample, such decision should be taken with care and further tested. Finally, 7-methyl-2-octanol is described for the first time in Gonyleptidae, emphasizing the chemical diverse nature in the K92 clade.</p></div>\",\"PeriodicalId\":515,\"journal\":{\"name\":\"Chemoecology\",\"volume\":\"33 1-2\",\"pages\":\"1 - 15\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemoecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00049-023-00380-4\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-023-00380-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Chemical and evolutionary analysis of the scent gland secretions of two species of Gonyleptes Kirby, 1819 (Arachnida: Opiliones: Laniatores)
The subfamily Gonyleptinae is the second largest in Gonyleptidae, harboring over 100 species. Gonyleptinae is polyphyletic, nestled in the clade K92, and despite its richness, several species of that subfamily have not had their chemicals of the defensive secretions analyzed. Among these are Gonyleptes curticornis (Mello-Leitão, 1940) and G. horridus Kirby, 1819, the latter being particularly important, because it is the type species of the genus, which in turn names the subfamily Gonyleptinae. Gonyleptes horridus is also used in many phylogenetic analyses, be it using morphological or molecular data. The chemical study of the secretions of these two species by GC–MS and 1H NMR showed the presence of 1-(6-isopropyl-3,4-dihydro-2H-pyran-2-yl)-methylbutanone, 1-(6-isopropyl-3,4-dihydro-2H-pyran-2-yl) isobutanone and 4-methyl-1-hepten-3-one in both species. On the other hand, 4-methyl-1-hexen-3-one was observed only in G. curticornis, and 7-methyl-2-octanol is exclusive of G. horridus. All vinyl-ketones identified have already been described for Gonyleptidae. We ran an Ancestral Character State Reconstruction (ASR) analysis under three different conditions to infer the evolution of the identified compounds (based on modified characters of a previous study) and their chemical nature (multistate character, either as alkylphenol, benzoquinone or vinyl-ketone) on a modified Gonyleptidae phylogeny. Our results corroborate previous studies that alkylphenol is the ancestral most condition, changing to benzoquinone in the ancestor of Gonyleptidae or even earlier in a grassatorean ancestor depending on the analysis. Vinyl-ketones are a synapomorphy of K92. We briefly discuss character codifications and use of weights of ASR analyses of specific compounds, which were inconclusive. 1-(6-isopropyl-3,4-dihydro-2H-pyran-2-yl) isobutanone is shared by both Gonyleptes species and described for the genus Sodreana Mello-Leitão, 1922. 1-(6-(1-methyl-propyl)3,4-dihydro-2H-pyran-2yl)2-methylbutanone and 4-methyl-1-hepten-3-one are also shared by both Gonyleptes species and described for Moreiranula saprophila. From a taxonomic standpoint, combinations of specific compounds might help to diagnose supraspecific groups but given our limited sample, such decision should be taken with care and further tested. Finally, 7-methyl-2-octanol is described for the first time in Gonyleptidae, emphasizing the chemical diverse nature in the K92 clade.
期刊介绍:
It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.