甘蔗活性炭作为炼油废水中苯酚的高效吸附剂:平衡、动力学和热力学研究

IF 1.5 Q2 ENGINEERING, MULTIDISCIPLINARY
M. S. Abdulrahman, Alanood A. Alsarayreh, S. A. Barno, Mervat A. Abd Elkawi, A. Abbas
{"title":"甘蔗活性炭作为炼油废水中苯酚的高效吸附剂:平衡、动力学和热力学研究","authors":"M. S. Abdulrahman, Alanood A. Alsarayreh, S. A. Barno, Mervat A. Abd Elkawi, A. Abbas","doi":"10.1515/eng-2022-0442","DOIUrl":null,"url":null,"abstract":"Abstract The adsorption method may be one of the environmentally friendly, economical, and effective techniques to remove phenol from wastewater using low-cost adsorbent activated carbon (AC). The effects of the initial concentration of phenol, temperature, and time of the adsorption on the phenol removal percent were studied. The maximum removal percentage of phenol was 63.73% of the initial 150 mg/l concentration obtained at 25°C. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models have been applied to study the adsorption equilibrium. The results show that both Langmuir and Freundlich isotherms fitted the equilibrium data better with a high correlation coefficient (R 2) and a maximum adsorption capacity of 108.70 mg/g. Thorough fitting of adsorption kinetics data followed the pseudo-second-order model. Thermodynamic parameters were calculated in the temperature range of 25–50°C. The results show that the adsorption process of phenol on AC is more favorable at low temperatures.","PeriodicalId":19512,"journal":{"name":"Open Engineering","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activated carbon from sugarcane as an efficient adsorbent for phenol from petroleum refinery wastewater: Equilibrium, kinetic, and thermodynamic study\",\"authors\":\"M. S. Abdulrahman, Alanood A. Alsarayreh, S. A. Barno, Mervat A. Abd Elkawi, A. Abbas\",\"doi\":\"10.1515/eng-2022-0442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The adsorption method may be one of the environmentally friendly, economical, and effective techniques to remove phenol from wastewater using low-cost adsorbent activated carbon (AC). The effects of the initial concentration of phenol, temperature, and time of the adsorption on the phenol removal percent were studied. The maximum removal percentage of phenol was 63.73% of the initial 150 mg/l concentration obtained at 25°C. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models have been applied to study the adsorption equilibrium. The results show that both Langmuir and Freundlich isotherms fitted the equilibrium data better with a high correlation coefficient (R 2) and a maximum adsorption capacity of 108.70 mg/g. Thorough fitting of adsorption kinetics data followed the pseudo-second-order model. Thermodynamic parameters were calculated in the temperature range of 25–50°C. The results show that the adsorption process of phenol on AC is more favorable at low temperatures.\",\"PeriodicalId\":19512,\"journal\":{\"name\":\"Open Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eng-2022-0442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eng-2022-0442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要吸附法是利用低成本吸附活性炭去除废水中苯酚的一种环保、经济、有效的技术。研究了苯酚初始浓度、吸附温度和吸附时间对苯酚去除率的影响。苯酚的最大去除率为初始150的63.73% 在25°C下获得的mg/l浓度。Langmuir、Freundlich、Temkin和Dubinin–Radushkevich等温线模型已用于研究吸附平衡。结果表明,Langmuir和Freundlich等温线与平衡数据拟合较好,相关系数(R2)较高,最大吸附量为108.70 毫克/克。吸附动力学数据的完全拟合遵循伪二阶模型。热力学参数是在25–50°C的温度范围内计算的。结果表明,在低温条件下,AC对苯酚的吸附过程更为有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activated carbon from sugarcane as an efficient adsorbent for phenol from petroleum refinery wastewater: Equilibrium, kinetic, and thermodynamic study
Abstract The adsorption method may be one of the environmentally friendly, economical, and effective techniques to remove phenol from wastewater using low-cost adsorbent activated carbon (AC). The effects of the initial concentration of phenol, temperature, and time of the adsorption on the phenol removal percent were studied. The maximum removal percentage of phenol was 63.73% of the initial 150 mg/l concentration obtained at 25°C. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models have been applied to study the adsorption equilibrium. The results show that both Langmuir and Freundlich isotherms fitted the equilibrium data better with a high correlation coefficient (R 2) and a maximum adsorption capacity of 108.70 mg/g. Thorough fitting of adsorption kinetics data followed the pseudo-second-order model. Thermodynamic parameters were calculated in the temperature range of 25–50°C. The results show that the adsorption process of phenol on AC is more favorable at low temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Engineering
Open Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
3.90
自引率
0.00%
发文量
52
审稿时长
30 weeks
期刊介绍: Open Engineering publishes research results of wide interest in emerging interdisciplinary and traditional engineering fields, including: electrical and computer engineering, civil and environmental engineering, mechanical and aerospace engineering, material science and engineering. The journal is designed to facilitate the exchange of innovative and interdisciplinary ideas between researchers from different countries. Open Engineering is a peer-reviewed, English language journal. Researchers from non-English speaking regions are provided with free language correction by scientists who are native speakers. Additionally, each published article is widely promoted to researchers working in the same field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信