Y. R. Veeranki, Nagarajan Ganapathy, R. Swaminathan
{"title":"利用高阶交叉特征和参数分类器区分皮肤电活动信号中的二分情感状态","authors":"Y. R. Veeranki, Nagarajan Ganapathy, R. Swaminathan","doi":"10.34107/yhpn9422.04322","DOIUrl":null,"url":null,"abstract":"Prediction and recognition of happy and sad emotional states play important roles in many aspects of human life. In this work, an attempt has been made to classify them using Electrodermal Activity (EDA). For this, EDA signals are obtained from a public database and decomposed into tonic and phasic components. Features, namely Hjorth and higher-order crossing, are extracted from the phasic component of the signal. Further, these extracted features are fed to four parametric classifiers, namely, linear discriminant analysis, logistic regression, multilayer perceptron, and naive bayes for the classification. The results show that the proposed approach can classify the dichotomous happy and sad emotional states. The multilayer perceptron classifier is accurate (85.7%) in classifying happy and sad emotional states. The proposed method is robust in handling the dynamic variation of EDA signals for happy and sad emotional states. Thus, it appears that the proposed method could be able to understand the neurological, psychiatrical, and biobehavioural mechanisms of happy and sad emotional states.","PeriodicalId":75599,"journal":{"name":"Biomedical sciences instrumentation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DIFFERENTIATION OF DICHOTOMOUS EMOTIONAL STATES IN ELECTRODERMAL ACTIVITY SIGNALS USING HIGHER-ORDER CROSSING FEATURES AND PARAMETRIC CLASSIFIERS\",\"authors\":\"Y. R. Veeranki, Nagarajan Ganapathy, R. Swaminathan\",\"doi\":\"10.34107/yhpn9422.04322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction and recognition of happy and sad emotional states play important roles in many aspects of human life. In this work, an attempt has been made to classify them using Electrodermal Activity (EDA). For this, EDA signals are obtained from a public database and decomposed into tonic and phasic components. Features, namely Hjorth and higher-order crossing, are extracted from the phasic component of the signal. Further, these extracted features are fed to four parametric classifiers, namely, linear discriminant analysis, logistic regression, multilayer perceptron, and naive bayes for the classification. The results show that the proposed approach can classify the dichotomous happy and sad emotional states. The multilayer perceptron classifier is accurate (85.7%) in classifying happy and sad emotional states. The proposed method is robust in handling the dynamic variation of EDA signals for happy and sad emotional states. Thus, it appears that the proposed method could be able to understand the neurological, psychiatrical, and biobehavioural mechanisms of happy and sad emotional states.\",\"PeriodicalId\":75599,\"journal\":{\"name\":\"Biomedical sciences instrumentation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical sciences instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34107/yhpn9422.04322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical sciences instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34107/yhpn9422.04322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DIFFERENTIATION OF DICHOTOMOUS EMOTIONAL STATES IN ELECTRODERMAL ACTIVITY SIGNALS USING HIGHER-ORDER CROSSING FEATURES AND PARAMETRIC CLASSIFIERS
Prediction and recognition of happy and sad emotional states play important roles in many aspects of human life. In this work, an attempt has been made to classify them using Electrodermal Activity (EDA). For this, EDA signals are obtained from a public database and decomposed into tonic and phasic components. Features, namely Hjorth and higher-order crossing, are extracted from the phasic component of the signal. Further, these extracted features are fed to four parametric classifiers, namely, linear discriminant analysis, logistic regression, multilayer perceptron, and naive bayes for the classification. The results show that the proposed approach can classify the dichotomous happy and sad emotional states. The multilayer perceptron classifier is accurate (85.7%) in classifying happy and sad emotional states. The proposed method is robust in handling the dynamic variation of EDA signals for happy and sad emotional states. Thus, it appears that the proposed method could be able to understand the neurological, psychiatrical, and biobehavioural mechanisms of happy and sad emotional states.