节点能耗计算与监测数据收集指南

IF 3.7 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
A. del Río, Giuseppe Conti, S. Castaño-Solis, Javier Serrano, David Jiménez, J. Fraile-Ardanuy
{"title":"节点能耗计算与监测数据收集指南","authors":"A. del Río, Giuseppe Conti, S. Castaño-Solis, Javier Serrano, David Jiménez, J. Fraile-Ardanuy","doi":"10.3390/bdcc7030130","DOIUrl":null,"url":null,"abstract":"The digital transition that drives the new industrial revolution is largely driven by the application of intelligence and data. This boost leads to an increase in energy consumption, much of it associated with computing in data centers. This fact clashes with the growing need to save and improve energy efficiency and requires a more optimized use of resources. The deployment of new services in edge and cloud computing, virtualization, and software-defined networks requires a better understanding of consumption patterns aimed at more efficient and sustainable models and a reduction in carbon footprints. These patterns are suitable to be exploited by machine, deep, and reinforced learning techniques in pursuit of energy consumption optimization, which can ideally improve the energy efficiency of data centers and big computing servers providing these kinds of services. For the application of these techniques, it is essential to investigate data collection processes to create initial information points. Datasets also need to be created to analyze how to diagnose systems and sort out new ways of optimization. This work describes a data collection methodology used to create datasets that collect consumption data from a real-world work environment dedicated to data centers, server farms, or similar architectures. Specifically, it covers the entire process of energy stimuli generation, data extraction, and data preprocessing. The evaluation and reproduction of this method is offered to the scientific community through an online repository created for this work, which hosts all the code available for its download.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Guide to Data Collection for Computation and Monitoring of Node Energy Consumption\",\"authors\":\"A. del Río, Giuseppe Conti, S. Castaño-Solis, Javier Serrano, David Jiménez, J. Fraile-Ardanuy\",\"doi\":\"10.3390/bdcc7030130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The digital transition that drives the new industrial revolution is largely driven by the application of intelligence and data. This boost leads to an increase in energy consumption, much of it associated with computing in data centers. This fact clashes with the growing need to save and improve energy efficiency and requires a more optimized use of resources. The deployment of new services in edge and cloud computing, virtualization, and software-defined networks requires a better understanding of consumption patterns aimed at more efficient and sustainable models and a reduction in carbon footprints. These patterns are suitable to be exploited by machine, deep, and reinforced learning techniques in pursuit of energy consumption optimization, which can ideally improve the energy efficiency of data centers and big computing servers providing these kinds of services. For the application of these techniques, it is essential to investigate data collection processes to create initial information points. Datasets also need to be created to analyze how to diagnose systems and sort out new ways of optimization. This work describes a data collection methodology used to create datasets that collect consumption data from a real-world work environment dedicated to data centers, server farms, or similar architectures. Specifically, it covers the entire process of energy stimuli generation, data extraction, and data preprocessing. The evaluation and reproduction of this method is offered to the scientific community through an online repository created for this work, which hosts all the code available for its download.\",\"PeriodicalId\":36397,\"journal\":{\"name\":\"Big Data and Cognitive Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/bdcc7030130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc7030130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

推动新工业革命的数字化转型在很大程度上是由智能和数据的应用驱动的。这种增长导致能源消耗的增加,其中大部分与数据中心的计算有关。这一事实与日益增长的节约和提高能源效率的需求相冲突,需要更优化地利用资源。在边缘和云计算、虚拟化和软件定义网络中部署新服务需要更好地了解消费模式,以实现更高效、更可持续的模式,并减少碳足迹。这些模式适合被机器、深度和强化学习技术利用,以追求能耗优化,这可以理想地提高提供此类服务的数据中心和大型计算服务器的能源效率。为了应用这些技术,必须研究数据收集过程以创建初始信息点。还需要创建数据集来分析如何诊断系统并整理出新的优化方法。这项工作描述了一种数据收集方法,用于创建数据集,收集来自数据中心、服务器场或类似架构的真实工作环境的消费数据。具体来说,它涵盖了能量刺激产生、数据提取和数据预处理的整个过程。该方法的评估和复制通过为这项工作创建的在线存储库提供给科学界,该存储库包含所有可下载的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Guide to Data Collection for Computation and Monitoring of Node Energy Consumption
The digital transition that drives the new industrial revolution is largely driven by the application of intelligence and data. This boost leads to an increase in energy consumption, much of it associated with computing in data centers. This fact clashes with the growing need to save and improve energy efficiency and requires a more optimized use of resources. The deployment of new services in edge and cloud computing, virtualization, and software-defined networks requires a better understanding of consumption patterns aimed at more efficient and sustainable models and a reduction in carbon footprints. These patterns are suitable to be exploited by machine, deep, and reinforced learning techniques in pursuit of energy consumption optimization, which can ideally improve the energy efficiency of data centers and big computing servers providing these kinds of services. For the application of these techniques, it is essential to investigate data collection processes to create initial information points. Datasets also need to be created to analyze how to diagnose systems and sort out new ways of optimization. This work describes a data collection methodology used to create datasets that collect consumption data from a real-world work environment dedicated to data centers, server farms, or similar architectures. Specifically, it covers the entire process of energy stimuli generation, data extraction, and data preprocessing. The evaluation and reproduction of this method is offered to the scientific community through an online repository created for this work, which hosts all the code available for its download.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data and Cognitive Computing
Big Data and Cognitive Computing Business, Management and Accounting-Management Information Systems
CiteScore
7.10
自引率
8.10%
发文量
128
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信