Muhammad Uba Abdulazeez , Wasif Khan , Kassim Abdulrahman Abdullah
{"title":"使用不平衡数据集的机器学习模型预测阿拉伯联合酋长国儿童乘员碰撞伤害的严重程度","authors":"Muhammad Uba Abdulazeez , Wasif Khan , Kassim Abdulrahman Abdullah","doi":"10.1016/j.iatssr.2023.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Road traffic crashes have increased over the years leading to greater injury severity among children who are mostly vehicle occupants in high-income countries. This adversely affects the healthy development of children and might lead to death. However, studies in the literature have focused on predicting crash injuries among adults while children have different crash injury risks as well as crash kinematics compared to adults. To address this gap, this paper presents a new dataset for child occupant crash injury severity prediction collected over 8 years (2012 to 2019) in the United Arab Emirates (UAE). The performance of state-of-the-art machine learning algorithms was then evaluated using the proposed dataset. In addition, feature selection techniques and logistic regression model were employed to extract the most significant features for crash injury severity prediction among child occupants. Furthermore, the impact of data balancing approaches on the prediction performance was analyzed as the dataset is highly imbalanced. The experimental results showed that Adaboost, Bagging REP, ZeroR, OneR, and Decision Table algorithms predicts child occupant injury severity with the highest accuracy. Child occupant seating position, emirate, crash location, crash type and crash cause were observed as significant features that predicts injury severity by both the feature selection and logistic regression models.</p></div>","PeriodicalId":47059,"journal":{"name":"IATSS Research","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting child occupant crash injury severity in the United Arab Emirates using machine learning models for imbalanced dataset\",\"authors\":\"Muhammad Uba Abdulazeez , Wasif Khan , Kassim Abdulrahman Abdullah\",\"doi\":\"10.1016/j.iatssr.2023.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Road traffic crashes have increased over the years leading to greater injury severity among children who are mostly vehicle occupants in high-income countries. This adversely affects the healthy development of children and might lead to death. However, studies in the literature have focused on predicting crash injuries among adults while children have different crash injury risks as well as crash kinematics compared to adults. To address this gap, this paper presents a new dataset for child occupant crash injury severity prediction collected over 8 years (2012 to 2019) in the United Arab Emirates (UAE). The performance of state-of-the-art machine learning algorithms was then evaluated using the proposed dataset. In addition, feature selection techniques and logistic regression model were employed to extract the most significant features for crash injury severity prediction among child occupants. Furthermore, the impact of data balancing approaches on the prediction performance was analyzed as the dataset is highly imbalanced. The experimental results showed that Adaboost, Bagging REP, ZeroR, OneR, and Decision Table algorithms predicts child occupant injury severity with the highest accuracy. Child occupant seating position, emirate, crash location, crash type and crash cause were observed as significant features that predicts injury severity by both the feature selection and logistic regression models.</p></div>\",\"PeriodicalId\":47059,\"journal\":{\"name\":\"IATSS Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IATSS Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0386111223000249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IATSS Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0386111223000249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Predicting child occupant crash injury severity in the United Arab Emirates using machine learning models for imbalanced dataset
Road traffic crashes have increased over the years leading to greater injury severity among children who are mostly vehicle occupants in high-income countries. This adversely affects the healthy development of children and might lead to death. However, studies in the literature have focused on predicting crash injuries among adults while children have different crash injury risks as well as crash kinematics compared to adults. To address this gap, this paper presents a new dataset for child occupant crash injury severity prediction collected over 8 years (2012 to 2019) in the United Arab Emirates (UAE). The performance of state-of-the-art machine learning algorithms was then evaluated using the proposed dataset. In addition, feature selection techniques and logistic regression model were employed to extract the most significant features for crash injury severity prediction among child occupants. Furthermore, the impact of data balancing approaches on the prediction performance was analyzed as the dataset is highly imbalanced. The experimental results showed that Adaboost, Bagging REP, ZeroR, OneR, and Decision Table algorithms predicts child occupant injury severity with the highest accuracy. Child occupant seating position, emirate, crash location, crash type and crash cause were observed as significant features that predicts injury severity by both the feature selection and logistic regression models.
期刊介绍:
First published in 1977 as an international journal sponsored by the International Association of Traffic and Safety Sciences, IATSS Research has contributed to the dissemination of interdisciplinary wisdom on ideal mobility, particularly in Asia. IATSS Research is an international refereed journal providing a platform for the exchange of scientific findings on transportation and safety across a wide range of academic fields, with particular emphasis on the links between scientific findings and practice in society and cultural contexts. IATSS Research welcomes submission of original research articles and reviews that satisfy the following conditions: 1.Relevant to transportation and safety, and the multiple impacts of transportation systems on security, human health, and the environment. 2.Contains important policy and practical implications based on scientific evidence in the applicable academic field. In addition to welcoming general submissions, IATSS Research occasionally plans and publishes special feature sections and special issues composed of invited articles addressing specific topics.