退化Klein-Gordon-Schrödinger-type系统的全局吸引子

Pub Date : 2022-11-17 DOI:10.1080/14689367.2022.2145181
M. Poulou, N. Zographopoulos
{"title":"退化Klein-Gordon-Schrödinger-type系统的全局吸引子","authors":"M. Poulou, N. Zographopoulos","doi":"10.1080/14689367.2022.2145181","DOIUrl":null,"url":null,"abstract":"In this paper, we study the long-time behaviour of solutions of a degenerate Klein–Gordon–Schrödinger-type system which is defined in a bounded domain. First, we proved the existence, uniqueness and continuity of the solutions on the initial data, then the asymptotic compactness of the solutions and finally the existence of a global compact attractor.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global attractor for a degenerate Klein–Gordon–Schrödinger-type system\",\"authors\":\"M. Poulou, N. Zographopoulos\",\"doi\":\"10.1080/14689367.2022.2145181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the long-time behaviour of solutions of a degenerate Klein–Gordon–Schrödinger-type system which is defined in a bounded domain. First, we proved the existence, uniqueness and continuity of the solutions on the initial data, then the asymptotic compactness of the solutions and finally the existence of a global compact attractor.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2022.2145181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2145181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了定义在有界域中的退化Klein–Gordon–Schrödinger型系统解的长期行为。首先,我们证明了初始数据上解的存在性、唯一性和连续性,然后证明了解的渐近紧性,最后证明了全局紧吸引子的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Global attractor for a degenerate Klein–Gordon–Schrödinger-type system
In this paper, we study the long-time behaviour of solutions of a degenerate Klein–Gordon–Schrödinger-type system which is defined in a bounded domain. First, we proved the existence, uniqueness and continuity of the solutions on the initial data, then the asymptotic compactness of the solutions and finally the existence of a global compact attractor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信