{"title":"十年解码:间谍和黑客在TAL效应研究的历史。","authors":"Álvaro L. Pérez-Quintero, B. Szurek","doi":"10.1146/annurev-phyto-082718-100026","DOIUrl":null,"url":null,"abstract":"Transcription activator-like effectors (TALEs) from the genus Xanthomonas are proteins with the remarkable ability to directly bind the promoters of genes in the plant host to induce their expression, which often helps bacterial colonization. Metaphorically, TALEs act as spies that infiltrate the plant disguised as high-ranking civilians (transcription factors) to trick the plant into activating weak points that allow an invasion. Current knowledge of how TALEs operate allows researchers to predict their activity (counterespionage) and exploit their function, engineering them to do our bidding (a Manchurian agent). This has been possible thanks particularly to the discovery of their DNA binding mechanism, which obeys specific amino acid-DNA correspondences (the TALE code). Here, we review the history of how researchers discovered the way these proteins work and what has changed in the ten years since the discovery of the code. Recommended music for reading this review can be found in the Supplemental Material. Expected final online publication date for the Annual Review of Phytopathology, Volume 57 is August 26, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-phyto-082718-100026","citationCount":"41","resultStr":"{\"title\":\"A Decade Decoded: Spies and Hackers in the History of TAL Effectors Research.\",\"authors\":\"Álvaro L. Pérez-Quintero, B. Szurek\",\"doi\":\"10.1146/annurev-phyto-082718-100026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transcription activator-like effectors (TALEs) from the genus Xanthomonas are proteins with the remarkable ability to directly bind the promoters of genes in the plant host to induce their expression, which often helps bacterial colonization. Metaphorically, TALEs act as spies that infiltrate the plant disguised as high-ranking civilians (transcription factors) to trick the plant into activating weak points that allow an invasion. Current knowledge of how TALEs operate allows researchers to predict their activity (counterespionage) and exploit their function, engineering them to do our bidding (a Manchurian agent). This has been possible thanks particularly to the discovery of their DNA binding mechanism, which obeys specific amino acid-DNA correspondences (the TALE code). Here, we review the history of how researchers discovered the way these proteins work and what has changed in the ten years since the discovery of the code. Recommended music for reading this review can be found in the Supplemental Material. Expected final online publication date for the Annual Review of Phytopathology, Volume 57 is August 26, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8251,\"journal\":{\"name\":\"Annual review of phytopathology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-phyto-082718-100026\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-phyto-082718-100026\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-phyto-082718-100026","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A Decade Decoded: Spies and Hackers in the History of TAL Effectors Research.
Transcription activator-like effectors (TALEs) from the genus Xanthomonas are proteins with the remarkable ability to directly bind the promoters of genes in the plant host to induce their expression, which often helps bacterial colonization. Metaphorically, TALEs act as spies that infiltrate the plant disguised as high-ranking civilians (transcription factors) to trick the plant into activating weak points that allow an invasion. Current knowledge of how TALEs operate allows researchers to predict their activity (counterespionage) and exploit their function, engineering them to do our bidding (a Manchurian agent). This has been possible thanks particularly to the discovery of their DNA binding mechanism, which obeys specific amino acid-DNA correspondences (the TALE code). Here, we review the history of how researchers discovered the way these proteins work and what has changed in the ten years since the discovery of the code. Recommended music for reading this review can be found in the Supplemental Material. Expected final online publication date for the Annual Review of Phytopathology, Volume 57 is August 26, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Phytopathology, established in 1963, covers major advancements in plant pathology, including plant disease diagnosis, pathogens, host-pathogen Interactions, epidemiology and ecology, breeding for resistance and plant disease management, and includes a special section on the development of concepts. The journal is now open access through Annual Reviews' Subscribe to Open program, with articles published under a CC BY license.