Ayoub Aroua , Walter Lhomme , Florian Verbelen , Mohamed N. Ibrahim , Alain Bouscayrol , Peter Sergeant , Kurt Stockman
{"title":"永磁同步电机标度规律对电动汽车能耗计算精度的影响","authors":"Ayoub Aroua , Walter Lhomme , Florian Verbelen , Mohamed N. Ibrahim , Alain Bouscayrol , Peter Sergeant , Kurt Stockman","doi":"10.1016/j.etran.2023.100269","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper compares the impact of two scaling methods of electric machines on the energy consumption of electric vehicles. The first one is the linear losses-to-power scaling method of efficiency maps, which is widely used in powertrain design studies. While the second is the geometric scaling method. Linear scaling assumes that the losses of a reference machine are linearly scaled according to the new desired power rating. This assumption is questionable and yet its impact on the energy consumption of electric vehicles remains unknown. Geometric scaling enables rapid and accurate recalculation of the parameters of the scaled machines based on scaling laws validated by </span>finite element analysis<span>. For this comparison, a reference machine design of 80 kW is downscaled with a power scaling factor of 0.58 and upscaled considering a power scaling of 1.96. For comparative purposes, optimal combinations of geometric scaling factors are determined. The scaled machines are derived to fit the driving requirements of two electric vehicles, namely a light-duty vehicle and a medium-duty truck. The comparison is performed for 9 standardized driving cycles. The results show that the maximal relative difference between linear and geometric scaling in terms of energy consumption is 3.5% for the case of the light-duty vehicle, compared with 1.2% for the case of the truck. The findings of this work provide evidence that linear scaling can continue to be used in system-level design studies with a relatively low impact on energy consumption. This is of high interest considering the simplicity of linear scaling and its potential for time-saving in the early development phases of electric vehicles.</span></p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":null,"pages":null},"PeriodicalIF":15.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Impact of scaling laws of permanent magnet synchronous machines on the accuracy of energy consumption computation of electric vehicles\",\"authors\":\"Ayoub Aroua , Walter Lhomme , Florian Verbelen , Mohamed N. Ibrahim , Alain Bouscayrol , Peter Sergeant , Kurt Stockman\",\"doi\":\"10.1016/j.etran.2023.100269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This paper compares the impact of two scaling methods of electric machines on the energy consumption of electric vehicles. The first one is the linear losses-to-power scaling method of efficiency maps, which is widely used in powertrain design studies. While the second is the geometric scaling method. Linear scaling assumes that the losses of a reference machine are linearly scaled according to the new desired power rating. This assumption is questionable and yet its impact on the energy consumption of electric vehicles remains unknown. Geometric scaling enables rapid and accurate recalculation of the parameters of the scaled machines based on scaling laws validated by </span>finite element analysis<span>. For this comparison, a reference machine design of 80 kW is downscaled with a power scaling factor of 0.58 and upscaled considering a power scaling of 1.96. For comparative purposes, optimal combinations of geometric scaling factors are determined. The scaled machines are derived to fit the driving requirements of two electric vehicles, namely a light-duty vehicle and a medium-duty truck. The comparison is performed for 9 standardized driving cycles. The results show that the maximal relative difference between linear and geometric scaling in terms of energy consumption is 3.5% for the case of the light-duty vehicle, compared with 1.2% for the case of the truck. The findings of this work provide evidence that linear scaling can continue to be used in system-level design studies with a relatively low impact on energy consumption. This is of high interest considering the simplicity of linear scaling and its potential for time-saving in the early development phases of electric vehicles.</span></p></div>\",\"PeriodicalId\":36355,\"journal\":{\"name\":\"Etransportation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Etransportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590116823000449\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116823000449","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Impact of scaling laws of permanent magnet synchronous machines on the accuracy of energy consumption computation of electric vehicles
This paper compares the impact of two scaling methods of electric machines on the energy consumption of electric vehicles. The first one is the linear losses-to-power scaling method of efficiency maps, which is widely used in powertrain design studies. While the second is the geometric scaling method. Linear scaling assumes that the losses of a reference machine are linearly scaled according to the new desired power rating. This assumption is questionable and yet its impact on the energy consumption of electric vehicles remains unknown. Geometric scaling enables rapid and accurate recalculation of the parameters of the scaled machines based on scaling laws validated by finite element analysis. For this comparison, a reference machine design of 80 kW is downscaled with a power scaling factor of 0.58 and upscaled considering a power scaling of 1.96. For comparative purposes, optimal combinations of geometric scaling factors are determined. The scaled machines are derived to fit the driving requirements of two electric vehicles, namely a light-duty vehicle and a medium-duty truck. The comparison is performed for 9 standardized driving cycles. The results show that the maximal relative difference between linear and geometric scaling in terms of energy consumption is 3.5% for the case of the light-duty vehicle, compared with 1.2% for the case of the truck. The findings of this work provide evidence that linear scaling can continue to be used in system-level design studies with a relatively low impact on energy consumption. This is of high interest considering the simplicity of linear scaling and its potential for time-saving in the early development phases of electric vehicles.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.