通俗小说中性别刻板印象的刻画:一种机器学习方法

IF 0.7 Q3 COMMUNICATION
Chengyue Zhang, Ben Wu
{"title":"通俗小说中性别刻板印象的刻画:一种机器学习方法","authors":"Chengyue Zhang, Ben Wu","doi":"10.30935/ojcmt/13644","DOIUrl":null,"url":null,"abstract":"Gender representation portrayed in popular mass media is known to reflect and reinforce societal gender stereotypes. This research uses two methods of natural language processing–Word2Vec and bidirectional encoder representations from transformers (BERT) model–to analyze gender representation in popular fiction and quantify gender bias with gender bias score. Word2Vec, which represents the words in vectorized format, can capture implicit human gender bias with the geometry relationship between word vectors. BERT, a newer pre-trained deep learning model, is specialized in understanding words in the larger context it appears in. The research will compare the results obtained from Word2Vec and BERT. With book check out records from the Seattle Public Library checkout dataset–an ongoing open source dataset from the public library system of Seattle, WA–the research aims to identify evolutionary trends of gender bias in popular fiction and analyze consumer preferences regarding gender representation.","PeriodicalId":42941,"journal":{"name":"Online Journal of Communication and Media Technologies","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing gender stereotypes in popular fiction: A machine learning approach\",\"authors\":\"Chengyue Zhang, Ben Wu\",\"doi\":\"10.30935/ojcmt/13644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gender representation portrayed in popular mass media is known to reflect and reinforce societal gender stereotypes. This research uses two methods of natural language processing–Word2Vec and bidirectional encoder representations from transformers (BERT) model–to analyze gender representation in popular fiction and quantify gender bias with gender bias score. Word2Vec, which represents the words in vectorized format, can capture implicit human gender bias with the geometry relationship between word vectors. BERT, a newer pre-trained deep learning model, is specialized in understanding words in the larger context it appears in. The research will compare the results obtained from Word2Vec and BERT. With book check out records from the Seattle Public Library checkout dataset–an ongoing open source dataset from the public library system of Seattle, WA–the research aims to identify evolutionary trends of gender bias in popular fiction and analyze consumer preferences regarding gender representation.\",\"PeriodicalId\":42941,\"journal\":{\"name\":\"Online Journal of Communication and Media Technologies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Online Journal of Communication and Media Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30935/ojcmt/13644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMMUNICATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Journal of Communication and Media Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30935/ojcmt/13644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,大众传播媒介所描绘的性别代表反映和加强了社会上对性别的刻板印象。本研究采用两种自然语言处理方法——word2vec和双向编码器变形表示(BERT)模型——分析通俗小说中的性别表征,并用性别偏见评分量化性别偏见。Word2Vec以矢量形式表示单词,利用单词向量之间的几何关系捕捉隐含的人类性别偏见。BERT是一种较新的预训练深度学习模型,专门用于在更大的上下文中理解单词。该研究将比较从Word2Vec和BERT获得的结果。利用西雅图公共图书馆借阅数据的图书借阅记录——这是华盛顿州西雅图公共图书馆系统的一个正在进行的开源数据集——研究旨在确定流行小说中性别偏见的演变趋势,并分析消费者对性别代表的偏好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing gender stereotypes in popular fiction: A machine learning approach
Gender representation portrayed in popular mass media is known to reflect and reinforce societal gender stereotypes. This research uses two methods of natural language processing–Word2Vec and bidirectional encoder representations from transformers (BERT) model–to analyze gender representation in popular fiction and quantify gender bias with gender bias score. Word2Vec, which represents the words in vectorized format, can capture implicit human gender bias with the geometry relationship between word vectors. BERT, a newer pre-trained deep learning model, is specialized in understanding words in the larger context it appears in. The research will compare the results obtained from Word2Vec and BERT. With book check out records from the Seattle Public Library checkout dataset–an ongoing open source dataset from the public library system of Seattle, WA–the research aims to identify evolutionary trends of gender bias in popular fiction and analyze consumer preferences regarding gender representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
5.00%
发文量
40
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信