字典积图的三垂枝树连通性的下界

IF 0.4 4区 数学 Q4 MATHEMATICS
Y. Mao, Christopher Melekian, E. Cheng
{"title":"字典积图的三垂枝树连通性的下界","authors":"Y. Mao, Christopher Melekian, E. Cheng","doi":"10.21136/CMJ.2022.0057-22","DOIUrl":null,"url":null,"abstract":"for a connected graph G = (V, E) and a set S ⊆ V(G) with at least two vertices, an S-Steiner tree is a subgraph T = (V′, E′) of G that is a tree with S ⊆ V′. If the degree of each vertex of S in T is equal to 1, then T is called a pendant S-Steiner tree. Two S-Steiner trees are internally disjoint if they share no vertices other than S and have no edges in common. For S ⊆ V(G) and |S| ≽ 2, the pendant tree-connectivity τG(S) is the maximum number of internally disjoint pendant S-Steiner trees in G, and for k ≽ 2, the k-pendant tree-connectivity τk(G) is the minimum value of τG(S) over all sets S of k vertices. We derive a lower bound for τ3(G ◦ H), where G and H are connected graphs and ◦ denotes the lexicographic product.","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"73 1","pages":"237 - 244"},"PeriodicalIF":0.4000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lower bound for the 3-pendant tree-connectivity of lexicographic product graphs\",\"authors\":\"Y. Mao, Christopher Melekian, E. Cheng\",\"doi\":\"10.21136/CMJ.2022.0057-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"for a connected graph G = (V, E) and a set S ⊆ V(G) with at least two vertices, an S-Steiner tree is a subgraph T = (V′, E′) of G that is a tree with S ⊆ V′. If the degree of each vertex of S in T is equal to 1, then T is called a pendant S-Steiner tree. Two S-Steiner trees are internally disjoint if they share no vertices other than S and have no edges in common. For S ⊆ V(G) and |S| ≽ 2, the pendant tree-connectivity τG(S) is the maximum number of internally disjoint pendant S-Steiner trees in G, and for k ≽ 2, the k-pendant tree-connectivity τk(G) is the minimum value of τG(S) over all sets S of k vertices. We derive a lower bound for τ3(G ◦ H), where G and H are connected graphs and ◦ denotes the lexicographic product.\",\"PeriodicalId\":50596,\"journal\":{\"name\":\"Czechoslovak Mathematical Journal\",\"volume\":\"73 1\",\"pages\":\"237 - 244\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czechoslovak Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/CMJ.2022.0057-22\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2022.0057-22","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于连通图G=(V,E)和具有至少两个顶点的集合S⊆V(G),S-Steiner树是G的子图T=(V′,E′),它是具有S≾V′的树。如果S在T中的每个顶点的阶都等于1,那么T被称为垂式S-Steiner树。如果两个S-Steiner树除了S之外没有其他顶点,并且没有共同的边,那么它们在内部是不相交的。对于S⊆V(G)和|S|≽2,悬垂树连通性τG(S)是G中内部不相交的悬垂S-Steiner树的最大数目,而对于k \8829;2,k-悬垂树连通度τk(G)是τG(S)在所有k个顶点的集合S上的最小值。我们导出了τ3(G◦ H) ,其中G和H是连通图◦ 表示词典编纂产物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A lower bound for the 3-pendant tree-connectivity of lexicographic product graphs
for a connected graph G = (V, E) and a set S ⊆ V(G) with at least two vertices, an S-Steiner tree is a subgraph T = (V′, E′) of G that is a tree with S ⊆ V′. If the degree of each vertex of S in T is equal to 1, then T is called a pendant S-Steiner tree. Two S-Steiner trees are internally disjoint if they share no vertices other than S and have no edges in common. For S ⊆ V(G) and |S| ≽ 2, the pendant tree-connectivity τG(S) is the maximum number of internally disjoint pendant S-Steiner trees in G, and for k ≽ 2, the k-pendant tree-connectivity τk(G) is the minimum value of τG(S) over all sets S of k vertices. We derive a lower bound for τ3(G ◦ H), where G and H are connected graphs and ◦ denotes the lexicographic product.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信