{"title":"地理格局是自然资源中气候和水文组成部分相互联系的决定因素","authors":"E. Gaidukova, V. Kovalenko","doi":"10.18052/WWW.SCIPRESS.COM/ILNS.74.49","DOIUrl":null,"url":null,"abstract":"Some of the practical implications of the previously identified geographic patterns linking climate rate of surface temperature with the fractal dimension of a multi-year series of runoff, are presented. The statistical data, showing a role of coefficient of kurtosis at classification of distributions of density of probability in a range of air temperatures from –5 to 27 degrees Celsius are given. It is empirically established that statistical distributions of long-term average annual runoff series for the temperature zone with prevailing high values of the fractal dimension correspond to beta-distributions of type II and when plotted on the K. Pearson diagram this type is distinguished from probability density curves in other temperature zones by kurtosis (statistically significant). It is revealed that ignoring the coefficient of kurtosis means not taking into account the climatic component of natural resources. The results of the study can be used to assess the reliability of hydraulic structures and in the field of water management.","PeriodicalId":14407,"journal":{"name":"International Letters of Natural Sciences","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geographic Pattern as a Determinant Factor of Interlinking Climatic and Hydrological Components of the Natural Resources\",\"authors\":\"E. Gaidukova, V. Kovalenko\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/ILNS.74.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some of the practical implications of the previously identified geographic patterns linking climate rate of surface temperature with the fractal dimension of a multi-year series of runoff, are presented. The statistical data, showing a role of coefficient of kurtosis at classification of distributions of density of probability in a range of air temperatures from –5 to 27 degrees Celsius are given. It is empirically established that statistical distributions of long-term average annual runoff series for the temperature zone with prevailing high values of the fractal dimension correspond to beta-distributions of type II and when plotted on the K. Pearson diagram this type is distinguished from probability density curves in other temperature zones by kurtosis (statistically significant). It is revealed that ignoring the coefficient of kurtosis means not taking into account the climatic component of natural resources. The results of the study can be used to assess the reliability of hydraulic structures and in the field of water management.\",\"PeriodicalId\":14407,\"journal\":{\"name\":\"International Letters of Natural Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Letters of Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/ILNS.74.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Letters of Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/ILNS.74.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geographic Pattern as a Determinant Factor of Interlinking Climatic and Hydrological Components of the Natural Resources
Some of the practical implications of the previously identified geographic patterns linking climate rate of surface temperature with the fractal dimension of a multi-year series of runoff, are presented. The statistical data, showing a role of coefficient of kurtosis at classification of distributions of density of probability in a range of air temperatures from –5 to 27 degrees Celsius are given. It is empirically established that statistical distributions of long-term average annual runoff series for the temperature zone with prevailing high values of the fractal dimension correspond to beta-distributions of type II and when plotted on the K. Pearson diagram this type is distinguished from probability density curves in other temperature zones by kurtosis (statistically significant). It is revealed that ignoring the coefficient of kurtosis means not taking into account the climatic component of natural resources. The results of the study can be used to assess the reliability of hydraulic structures and in the field of water management.