自由能景观的调节作为抗菌肽设计的一种策略

IF 1.8 4区 生物学 Q3 BIOPHYSICS
Sergio A. Hassan, Peter J. Steinbach
{"title":"自由能景观的调节作为抗菌肽设计的一种策略","authors":"Sergio A. Hassan,&nbsp;Peter J. Steinbach","doi":"10.1007/s10867-022-09605-z","DOIUrl":null,"url":null,"abstract":"<div><p>Computational design of antimicrobial peptides (AMPs) is a promising area of research for developing novel agents against drug-resistant bacteria. AMPs are present naturally in many organisms, from bacteria to humans, a time-tested mechanism that makes them attractive as effective antibiotics. Depending on the environment, AMPs can exhibit α-helical or β-sheet conformations, a mix of both, or lack secondary structure; they can be linear or cyclic. Prediction of their structures is challenging but critical for rational design. Promising AMP leads can be developed using essentially two approaches: traditional modeling of the physicochemical mechanisms that determine peptide behavior in aqueous and membrane environments and knowledge-based, e.g., machine learning (ML) techniques, that exploit ever-growing AMP databases. Here, we explore the conformational landscapes of two recently ML-designed AMPs, characterize the dependence of these landscapes on the medium conditions, and identify features in peptide and membrane landscapes that mediate protein-membrane association. For both peptides, we observe greater conformational diversity in an aqueous solvent than in a less polar solvent, and one peptide is seen to alter its conformation more dramatically than the other upon the change of solvent. Our results support the view that structural rearrangement in response to environmental changes is central to the mechanism of membrane-structure disruption by linear peptides. We expect that the design of AMPs by ML will benefit from the incorporation of peptide conformational substates as quantified here with molecular simulations.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-022-09605-z.pdf","citationCount":"1","resultStr":"{\"title\":\"Modulation of free energy landscapes as a strategy for the design of antimicrobial peptides\",\"authors\":\"Sergio A. Hassan,&nbsp;Peter J. Steinbach\",\"doi\":\"10.1007/s10867-022-09605-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Computational design of antimicrobial peptides (AMPs) is a promising area of research for developing novel agents against drug-resistant bacteria. AMPs are present naturally in many organisms, from bacteria to humans, a time-tested mechanism that makes them attractive as effective antibiotics. Depending on the environment, AMPs can exhibit α-helical or β-sheet conformations, a mix of both, or lack secondary structure; they can be linear or cyclic. Prediction of their structures is challenging but critical for rational design. Promising AMP leads can be developed using essentially two approaches: traditional modeling of the physicochemical mechanisms that determine peptide behavior in aqueous and membrane environments and knowledge-based, e.g., machine learning (ML) techniques, that exploit ever-growing AMP databases. Here, we explore the conformational landscapes of two recently ML-designed AMPs, characterize the dependence of these landscapes on the medium conditions, and identify features in peptide and membrane landscapes that mediate protein-membrane association. For both peptides, we observe greater conformational diversity in an aqueous solvent than in a less polar solvent, and one peptide is seen to alter its conformation more dramatically than the other upon the change of solvent. Our results support the view that structural rearrangement in response to environmental changes is central to the mechanism of membrane-structure disruption by linear peptides. We expect that the design of AMPs by ML will benefit from the incorporation of peptide conformational substates as quantified here with molecular simulations.</p></div>\",\"PeriodicalId\":612,\"journal\":{\"name\":\"Journal of Biological Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10867-022-09605-z.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Physics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10867-022-09605-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-022-09605-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

抗菌肽(AMPs)的计算设计是开发抗耐药细菌新药的一个有前途的研究领域。amp天然存在于从细菌到人类的许多生物体中,这一经过时间考验的机制使其成为有效的抗生素。根据环境的不同,amp可以呈现α-螺旋或β-片状构象,或两者混合,或缺乏二级结构;它们可以是线性的也可以是循环的。预测它们的结构是具有挑战性的,但对合理设计至关重要。有前途的AMP引线基本上可以通过两种方法开发:传统的物理化学机制建模,确定肽在水和膜环境中的行为,以及基于知识的,例如机器学习(ML)技术,利用不断增长的AMP数据库。在这里,我们探索了最近ml设计的两种amp的构象景观,表征了这些景观对介质条件的依赖性,并确定了介导蛋白-膜结合的肽和膜景观的特征。对于这两种肽,我们观察到在水溶液中比在极性较低的溶剂中更大的构象多样性,并且在溶剂的变化中,一种肽的构象变化比另一种肽更显著。我们的研究结果支持这样的观点,即响应环境变化的结构重排是线性肽破坏膜结构的核心机制。我们期望通过ML设计amp将受益于肽构象底态的结合,这里通过分子模拟量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modulation of free energy landscapes as a strategy for the design of antimicrobial peptides

Modulation of free energy landscapes as a strategy for the design of antimicrobial peptides

Computational design of antimicrobial peptides (AMPs) is a promising area of research for developing novel agents against drug-resistant bacteria. AMPs are present naturally in many organisms, from bacteria to humans, a time-tested mechanism that makes them attractive as effective antibiotics. Depending on the environment, AMPs can exhibit α-helical or β-sheet conformations, a mix of both, or lack secondary structure; they can be linear or cyclic. Prediction of their structures is challenging but critical for rational design. Promising AMP leads can be developed using essentially two approaches: traditional modeling of the physicochemical mechanisms that determine peptide behavior in aqueous and membrane environments and knowledge-based, e.g., machine learning (ML) techniques, that exploit ever-growing AMP databases. Here, we explore the conformational landscapes of two recently ML-designed AMPs, characterize the dependence of these landscapes on the medium conditions, and identify features in peptide and membrane landscapes that mediate protein-membrane association. For both peptides, we observe greater conformational diversity in an aqueous solvent than in a less polar solvent, and one peptide is seen to alter its conformation more dramatically than the other upon the change of solvent. Our results support the view that structural rearrangement in response to environmental changes is central to the mechanism of membrane-structure disruption by linear peptides. We expect that the design of AMPs by ML will benefit from the incorporation of peptide conformational substates as quantified here with molecular simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Physics
Journal of Biological Physics 生物-生物物理
CiteScore
3.00
自引率
5.60%
发文量
20
审稿时长
>12 weeks
期刊介绍: Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials. The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信