Han Liang , Huiyan Wang , Xuemei Sun , Wang Xu , Na Meng , Ninglin Zhou
{"title":"具有协同抗菌性能的ZnO/Ag纳米粒子负载聚多巴胺改性蒙脱土纳米复合材料的研制","authors":"Han Liang , Huiyan Wang , Xuemei Sun , Wang Xu , Na Meng , Ninglin Zhou","doi":"10.1016/j.clay.2023.107112","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Nanocomposites<span> are effective methods for the treatment of microbial infections. In this work, zinc oxide nanoparticles and silver nanoparticles were synthesized by a simple and mild method, and successfully loaded on polydopamine-modified </span></span>montmorillonite (PDA</span><img><span>Mt) to prepare nanocomposites (ZnO/Ag/PDA-Mt) with potent antibacterial ability. The transmission electron microscope (TEM) showed that the nanoparticles in ZnO/Ag/PDA-Mt were quasi-spherical, and the particle size ranged from 5 nm to 45 nm. The energy dispersive spectroscopy (EDS)-mapping verified the presence of Zn, Ag, O, Al, Si and C elements in the synthesized ZnO/Ag/PDA-Mt. In addition, the antimicrobial activity of ZnO/Ag/PDA-Mt was also tested against </span><em>Escherichia coli</em> (<em>E. coli</em>) and <em>Staphylococcus aureus</em> (<em>S. aureus</em>). Due to the synergistic antibacterial effect between zinc oxide nanoparticles and silver nanoparticles, ZnO/Ag/PDA-Mt exhibited higher antiseptic activity than silver nanoparticles supported polydopamine-modified montmorillonite (Ag/PDA-Mt) and zinc oxide nanoparticles supported polydopamine-modified montmorillonite (ZnO/PDA-Mt). The biocompatibility of ZnO/Ag/PDA-Mt was evaluated by cytotoxicity assay. The results demonstrated that the ZnO/Ag/PDA-Mt nanocomposites have potential for antibacterial applications.</p></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"244 ","pages":"Article 107112"},"PeriodicalIF":5.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of ZnO/Ag nanoparticles supported polydopamine-modified montmorillonite nanocomposites with synergistic antibacterial performance\",\"authors\":\"Han Liang , Huiyan Wang , Xuemei Sun , Wang Xu , Na Meng , Ninglin Zhou\",\"doi\":\"10.1016/j.clay.2023.107112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Nanocomposites<span> are effective methods for the treatment of microbial infections. In this work, zinc oxide nanoparticles and silver nanoparticles were synthesized by a simple and mild method, and successfully loaded on polydopamine-modified </span></span>montmorillonite (PDA</span><img><span>Mt) to prepare nanocomposites (ZnO/Ag/PDA-Mt) with potent antibacterial ability. The transmission electron microscope (TEM) showed that the nanoparticles in ZnO/Ag/PDA-Mt were quasi-spherical, and the particle size ranged from 5 nm to 45 nm. The energy dispersive spectroscopy (EDS)-mapping verified the presence of Zn, Ag, O, Al, Si and C elements in the synthesized ZnO/Ag/PDA-Mt. In addition, the antimicrobial activity of ZnO/Ag/PDA-Mt was also tested against </span><em>Escherichia coli</em> (<em>E. coli</em>) and <em>Staphylococcus aureus</em> (<em>S. aureus</em>). Due to the synergistic antibacterial effect between zinc oxide nanoparticles and silver nanoparticles, ZnO/Ag/PDA-Mt exhibited higher antiseptic activity than silver nanoparticles supported polydopamine-modified montmorillonite (Ag/PDA-Mt) and zinc oxide nanoparticles supported polydopamine-modified montmorillonite (ZnO/PDA-Mt). The biocompatibility of ZnO/Ag/PDA-Mt was evaluated by cytotoxicity assay. The results demonstrated that the ZnO/Ag/PDA-Mt nanocomposites have potential for antibacterial applications.</p></div>\",\"PeriodicalId\":245,\"journal\":{\"name\":\"Applied Clay Science\",\"volume\":\"244 \",\"pages\":\"Article 107112\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clay Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169131723002995\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131723002995","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Development of ZnO/Ag nanoparticles supported polydopamine-modified montmorillonite nanocomposites with synergistic antibacterial performance
Nanocomposites are effective methods for the treatment of microbial infections. In this work, zinc oxide nanoparticles and silver nanoparticles were synthesized by a simple and mild method, and successfully loaded on polydopamine-modified montmorillonite (PDAMt) to prepare nanocomposites (ZnO/Ag/PDA-Mt) with potent antibacterial ability. The transmission electron microscope (TEM) showed that the nanoparticles in ZnO/Ag/PDA-Mt were quasi-spherical, and the particle size ranged from 5 nm to 45 nm. The energy dispersive spectroscopy (EDS)-mapping verified the presence of Zn, Ag, O, Al, Si and C elements in the synthesized ZnO/Ag/PDA-Mt. In addition, the antimicrobial activity of ZnO/Ag/PDA-Mt was also tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Due to the synergistic antibacterial effect between zinc oxide nanoparticles and silver nanoparticles, ZnO/Ag/PDA-Mt exhibited higher antiseptic activity than silver nanoparticles supported polydopamine-modified montmorillonite (Ag/PDA-Mt) and zinc oxide nanoparticles supported polydopamine-modified montmorillonite (ZnO/PDA-Mt). The biocompatibility of ZnO/Ag/PDA-Mt was evaluated by cytotoxicity assay. The results demonstrated that the ZnO/Ag/PDA-Mt nanocomposites have potential for antibacterial applications.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...